
REPORT CONCERNING SPACE
DATA SYSTEM STANDARDS

THE DATA DESCRIPTION
LANGUAGE EAST—

A TUTORIAL

CCSDS 645.0-G-1

GREEN BOOK

May 1997

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page i May 1997

AUTHORITY

Issue: Green Book, Issue 1
Date: May 1997
Location: São José dos Campos

São Paulo, Brazil

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of
technical panel experts from CCSDS Member Agencies. The procedure for review and
authorization of CCSDS Reports is detailed in the Procedures Manual for the Consultative
Committee for Space Data Systems [12].

This document is published and maintained by:

CCSDS Secretariat
Program Integration Division (Code MG)
National Aeronautics and Space Administration
Washington, DC 20546, USA

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page ii May 1997

FOREWORD

This Report is a companion book to Reference [1] and contains rationale and explanatory
material for the Recommendation in Reference [1].

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Report is therefore subject to CCSDS
document management and change control procedures which are defined in reference [12].
Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/ccsds/

Questions relating to the contents or status of this document should be addressed to the
CCSDS Secretariat at the address indicated on page i.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page iii May 1997

At time of publication, the active Member and Observer Agencies of the CCSDS were

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d'Etudes Spatiales (CNES)/France.
– Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– National Aeronautics and Space Administration (NASA)/USA.
– National Space Development Agency of Japan (NASDA)/Japan.
– Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Communications Research Laboratory (CRL)/Japan.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Industry Canada/Communications Research Centre (CRC)/Canada.
– Institute of Space and Astronautical Science (ISAS)/Japan.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Korea Aerospace Research Institute (KARI)/Korea.
– Ministry of Communications (MOC)/Israel.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Program Office (NSPO)/Taipei.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page iv May 1997

DOCUMENT CONTROL

Document Title Date Status/Remarks

CCSDS 645.0-G-1 Report Concerning Space Data
System Standards: The Data
Description Language EAST—
A Tutorial, Issue 1

May 1997 Original Issue

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page v May 1997

CONTENTS

Section Page

1 INTRODUCTION ..1-1

1.1 PURPOSE AND SCOPE .. 1-1
1.2 REQUIREMENTS AND THEIR RATIONALES... 1-1
1.3 DOCUMENT STRUCTURE .. 1-2
1.4 DEFINITIONS ... 1-3

1.4.1 TERMS ... 1-3
1.4.2 CONVENTIONS... 1-3

1.5 REFERENCES ... 1-4

2 OVERVIEW ...2-1

2.1 CONTEXT.. 2-1
2.2 ORGANIZATION OF THE INFORMATION CONVEYED BY EAST....... 2-3
2.3 SCOPE OF THE DATA TO BE DESCRIBED... 2-5

3 PRODUCING EAST DATA DESCRIPTIONS ...3-1

3.1 LEXICAL ELEMENTS OF EAST DATA DESCRIPTIONS 3-1
3.2 LOGICAL DESCRIPTIONS .. 3-2

3.2.1 OVERVIEW ... 3-2
3.2.2 ENUMERATION TYPES... 3-5
3.2.3 CHARACTER TYPES AND CHARACTER STRING TYPES......... 3-9
3.2.4 INTEGER TYPES... 3-10
3.2.5 REAL TYPES ... 3-11
3.2.6 RECORD TYPES.. 3-12
3.2.7 ARRAY TYPES.. 3-15
3.2.8 SUBTYPES... 3-18
3.2.9 VARIABLES .. 3-19
3.2.10 CONSTANTS ... 3-20
3.2.11 RECORD REPRESENTATION CLAUSES.................................... 3-24
3.2.12 VIRTUAL COMPONENTS.. 3-33
3.2.13 FREQUENTLY ASKED QUESTIONS .. 3-40

3.3 PHYSICAL DESCRIPTIONS .. 3-42

3.3.1 OVERVIEW ... 3-42
3.3.2 ARRAY STORAGE METHOD .. 3-44
3.3.3 OCTET STORAGE METHOD ... 3-45

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page vi May 1997

CONTENTS (continued)

Section Page

3.3.4 BINARY REPRESENTATION OF SCALAR TYPES.................... 3-51
3.3.5 ASCII REPRESENTATION OF SCALAR TYPES 3-59
3.3.6 FREQUENTLY ASKED QUESTIONS .. 3-64

3.4 ORGANIZATION OF EAST DATA DESCRIPTION RECORDS 3-65

3.4.1 LOGICAL DATA DESCRIPTION PACKAGE 3-65
3.4.2 PHYSICAL DATA DESCRIPTION PACKAGE 3-70

4 USING EAST DATA DESCRIPTION RECORD ...4-1

4.1 USING LOGICAL DESCRIPTIONS.. 4-1
4.2 USING PHYSICAL DESCRIPTIONS.. 4-2

5 RECOMMENDED PRACTICES AND LIMITATIONS5-1

5.1 RESERVED KEYWORDS... 5-1

5.1.1 EAST (AND ADA) KEYWORDS .. 5-1
5.1.2 PURE EAST RESERVED IDENTIFIERS .. 5-1
5.1.3 PURE ADA (AND NOT EAST) KEYWORDS................................. 5-2

5.2 RECOMMENDED USAGE OF THE EAST SYNTAX................................ 5-2
5.3 IDENTIFIED LIMITATIONS OF EAST TO DESCRIBE DATA................ 5-4
5.4 USE OF TOOLS... 5-5

6 EAST AND DATA DESCRIPTION LANGUAGE REQUIREMENTS6-1

ANNEX A ACRONYMS AND GLOSSARY ...A-1

ANNEX B SYNTAX RULES ..B-1

ANNEX C TOOLS FOR AN EAST ENVIRONMENT ...C-1

ANNEX D DATA DESCRIPTION RECORD EXAMPLESD-1

ANNEX E COMPLIANCE MATRIX ..E-1

ANNEX F COMPARISON BETWEEN ADA AND EAST ...F-1

INDEX ..I-1

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page vii May 1997

CONTENTS (continued)

Figure Page

2-1 Data Exchange in SFDU Context.. 2-2

2-2 Data and Data Description Records (DDR)... 2-5

2-3 Version 1 "Source Packet" Format.. 2-6

2-4 Orbit Location .. 2-7

2-5 Source Data Block .. 2-7

3-1 Data Block ended by a Marker.. 3-22

3-2 Discriminants in Version 1 "Source Packet" Format ... 3-34

3-3 ASCII Encoded Decimal Integer Format .. 3-60

3-4 ASCII Encoded Decimal Real Format .. 3-62

Example

3-1 Enumeration Type Declaration ... 3-5

3-2 Enumeration Representation Clauses Declaration ... 3-6

3-3 Length Clause Declaration.. 3-6

3-4 Complete Enumeration Type Definition ... 3-6

3-5 Complete Enumeration Type Definition ... 3-7

3-6 Enumeration Type Declaration using Characters... 3-7

3-7 Some Substitutes to Boolean Types .. 3-8

3-8 Character Type Declaration .. 3-9

3-9 Character String Type Declaration.. 3-9

3-10 Integer Type Declaration .. 3-10

3-11 Length Clause Declaration.. 3-10

3-12 Complete Integer Type Declarations... 3-10

3-13 Complete Real Type Declarations... 3-11

3-14 Record Type Declaration .. 3-12

3-15 Record Type Declaration with Optional Field... 3-13

3-16 Array Type Declaration with a Constant Number of Elements................................ 3-15

3-17 Array Instance Declaration ... 3-15

3-18 Array Type Declaration with a Variable Number of Elements 3-15

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page viii May 1997

CONTENTS (continued)

Example Page

3-19 Array Instance Declarations.. 3-16

3-20 Use of an Array Type with a Variable Number of Elements 3-16

3-21 Array Instance Declaration ... 3-16

3-22 Null Array Declaration ... 3-17

3-23 Subtype Declarations .. 3-18

3-24 Declaration of Variables ... 3-19

3-25 Constant Declarations ... 3-20

3-26 Use of Constants (1) ... 3-20

3-27 Number Declarations .. 3-21

3-28 Use of Constants (2) ... 3-21

3-29 Use of Non-typed Constants (1).. 3-21

3-30 Use of Non-typed Constants (2).. 3-21

3-31 Use of Constants as Markers... 3-22

3-32 EOF Marker Declaration... 3-23

3-33 Complete Record Type Declaration .. 3-24

3-34 Complete Record Type Declaration with Variants .. 3-25

3-35 Use of Record Representation Clauses.. 3-26

3-36 Incomplete Record Representation Clause Declaration (1)...................................... 3-27

3-37 Incomplete Record Representation Clause Declaration (2)...................................... 3-28

3-38 Complete Record Representation Clause Declaration.. 3-29

3-39 Complete Record Type Declaration with 2 Discriminants....................................... 3-30

3-40 Big Record Type Declaration.. 3-32

3-41 Big Record Type Declaration Using Word Facility ... 3-32

3-42 EAST logical description of Version 1 \“Source Packet\” Format........................... 3-35

3-43 Occurrences of Version 1 "Source Packet" Format ... 3-38

3-44 Two dimensional Matrix... 3-44

3-45 Array storage.. 3-45

3-46 Record with Elements on Octet Boundaries .. 3-46

3-47 Record with Elements not on Octet Boundaries .. 3-48

3-48 Octet storage... 3-50

3-49 Binary Integer Type Physical Description (1) ... 3-55

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page ix May 1997

CONTENTS (continued)

Example Page

3-50 Binary Integer Type Physical Description (2) ... 3-55

3-51 List of Conventions .. 3-57

3-52 Binary Real Type Physical Description... 3-58

3-53 ASCII Enumeration Type Logical Declaration ... 3-59

3-54 ASCII Enumeration Type Physical Description .. 3-60

3-55 ASCII Integer Type Logical Declaration .. 3-61

3-56 ASCII Integer Type Physical Description ... 3-61

3-57 ASCII Real Type Logical Declaration .. 3-63

3-58 ASCII Real Type Physical Description ... 3-63

3-59 Complete Logical Description .. 3-66

3-60 Template for ASCII and Binary Physical Descriptions.. 3-71

3-61 Template for Relation Type Definition ... 3-72

3-62 Complete Physical Description ... 3-74

4-1 Complete Logical Description .. 4-1

4-2 Complete Physical Description ... 4-3

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 1-1 May 1997

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

Panel 2 of the Consultative Committee for Space Data Systems (CCSDS) is involved in
information interchange issues. The Standard Formatted Data Unit (SFDU) concept is
intended to allow the automation of information interchange between and among different
environments (see reference [4]).

Intrinsic to the SFDU specification is the use of Data Description Record (DDR) to specify
the representation of the interchanged data. Because of the wide diversity of operating
systems and machine representations for numerics, the understanding of data coming from
another agency or archives can only be reached by using a rigorous notation/language that
provides a complete, non-ambiguous logical and physical description. EAST (Enhanced Ada
Subset) is one of the recommended languages for data description records.

This document is intended to assist in the use of EAST, proposed as a description language. It
explains how and why one would use this language to interchange data and data descriptions.

This document describes the usage of the EAST language, its format and construction rules as
well as suggested practices. The chosen acronym (Enhanced Ada SubseT) suggests that
EAST is based on a subset of the Ada programming language, which is the declarative part.
The use of EAST does not preclude the use of any language for the application accessing the
data, because in most of the cases, the use of a parser and an interpreter is needed. See 5.4
and Annex C for more explanations and a list of the available tools.

Most users will be able to use the language after reading this document.

1.2 REQUIREMENTS AND THEIR RATIONALES

This section has been developed from the document “Language Usage in Information
Interchange” (see reference [2]), which lists the Requirements for a Data Interchange
Language (DIL). The CCSDS believes that the general features of a language to support the
description of data being interchanged shall be:

R1. Good Readability

Rationale: Users not specialized in computing must be able to understand descriptions
of data to be processed, with a minimal effort.

R2. Support of basic data types

Rationale: As a minimum, the “atomic” types of character and numeric real and integer
must be supported within the language. Additionally, the chosen language
set should allow Boolean, bit and complex types.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 1-2 May 1997

R3. Data type definition capabilities

Rationale: Data type definition is the ability of the language to define and name user
data types, to classify into families of data (date,
temperature_in_degree_Celsius, distance_in_kilometers...).

R4. Data type structuring capabilities

Rationale: Data type structuring is the ability of the language to describe the logical
relationship of “atomic” data items.

R5. Separation of the description from the data

Rationale: This is the ability to physically separate the description of the data from the
data itself, so that the description can be updated and reused independently
of the data.

R6. Physical representation capabilities

Rationale: Physical representation is the ability of the language to specify the bit
pattern representation of data to be transported. This representation must
specify not only basic data types, but also how the implementation
producing the information represents these types.

1.3 DOCUMENT STRUCTURE

This document is intended to explain to potential users the description capabilities of EAST. It
provides information for the effective use of EAST. Readers who will also be reading the
EAST formal specification (reference [1]) may find it useful to read this document first, in
order to have more examples and justifications of the EAST syntactic rules.

This document is structured as follows:

− Section 2 presents an overview of the context and why is a Data Interchange Language
useful.

− Section 3 provides information and examples about EAST capabilities and how they can
be used to satisfy data description requirements.

− Section 4 proposes some uses of EAST descriptions.

− Section 5 suggests some general practices which make the data description easier,
identifies usages which may cause difficulties.

− Section 6 is a discussion of correspondence between requirements and EAST
capabilities.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 1-3 May 1997

− Annex A contains acronyms used in this document.

− Annex B contains some EAST usage rules identified in this document.

− Annex C lists some of the tools that can be provided to check, generate, parse and
analyze EAST descriptions.

− Annex D provides examples of data descriptions generated with an existing interactive
tool.

− Annex E provides a compliance matrix according to data description requirements.

− Annex F provides a comparison between Ada and EAST.

1.4 DEFINITIONS

1.4.1 TERMS

The terms used throughout this document are listed in Annex A. They are also explained in
the text when encountered for the first time.

1.4.2 CONVENTIONS

EAST is not case sensitive, but for the sake of readability, we adopted the following
conventions in the document:

− EAST keywords are provided using lowercase letters;

− user type names or user variable names are provided using uppercase letters.

As a tutorial, this document explains the EAST syntactic rules, in providing examples, notes
or answers to questions. Different categories of users will read this tutorial:

− application users, who are interested in knowing if EAST meets their requirements, if
tools support the EAST technology, etc.;

− programmers, who require many examples to follow in implementing specifications;

− Ada programmers, who are interested in the references to the Ada language, the
differences between the two languages, etc.

Three levels of detail corresponding to the categories above are provided in this document.
The following convention applies throughout the document: the notes that are addressed to
readers who have some knowledge of Ada, are indicated by a (Fn) sign; the text of the notes is
gathered in Annex F.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 1-4 May 1997

1.5 REFERENCES

[1] The Data Description Language EAST Specification (CCSD0010). Recommendation
for Space Data Systems Standards, CCSDS 644.0-B-1. Blue Book. Issue 1.
Washington, D.C.: CCSDS, May 1997.

[2] Language Usage in Information Interchange Tutorial. Report Concerning Space Data
Systems Standards, CCSDS 642.1-G-1. Green Book. Issue 1. Washington, D.C.:
CCSDS, October 1989.

[3] Packet Telemetry. Recommendation for Space Data Systems Standards, CCSDS 102.0-
B-4. Blue Book. Issue 4. Washington, D.C.: CCSDS, November 1995.

[4] Standard Formatted Data Units—Structure and Construction Rules. Recommendation
for Space Data Systems Standards, CCSDS 620.0-B-2. Blue Book. Issue 2.
Washington, D.C.: CCSDS, May 1992.

[5] ASCII Encoded English (CCSD0002). Recommendation for Space Data Systems
Standards, CCSDS 643.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS,
November 1992.

[6] Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—Part 1:
Latin Alphabet No. 1. International Standard, ISO 8859-1:1987. Geneva: ISO, 1987.

[7] Information Technology—Programming Languages—Ada. International Standard,
ISO/IEC 8652:1995. Geneva: ISO, 1995.

[8] Binary Floating Point Arithmetic. American National Standard, ANSI/IEEE 754-1985
(R1991). New York: ANSI, 1985.

[9] The Data Description Language EAST—List of Conventions. Report Concerning Space
Data Systems Standards, CCSDS 646.0-G-1. Green Book. Issue 1, May 1997.

[10] Information Technology—Programming Languages—FORTRAN. International
Standard, ISO/IEC 1539:1991. Geneva: ISO, 1991.

[11] Standard Formatted Data Units—Control Authority Procedures. Recommendation for
Space Data Systems Standards, CCSDS 630.0-B-1. Blue Book. Issue 1. Washington,
D.C.: CCSDS, June 1993.

[12] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS
A00.0-Y-7. Yellow Book. Issue 7. Washington, D.C.: CCSDS, November 1996.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-1 May 1997

2 OVERVIEW

2.1 CONTEXT

Before reading the technical content of the tutorial, the reader may want to know what is
useful for a description language and why a formal language (like EAST) is more
advantageous to a user than other languages (like the English language, for example).

Space agencies produce a large amount of data, which are immediately investigated, or stored,
or exchanged, etc. A data item that is not described is useless. Indeed, how can it be used, if
no one knows what it represents, how long it is, if it is a scalar or something else?

Data description languages are therefore highly necessary to space agencies to manage and
maintain their vast amounts of data. Some data description languages are available: the natural
language English is also recommended by the CCSDS (reference [5]) to supply information
within the Standard Formatted Data Unit (SFDU) environment.

The use of a formal language instead of a natural language has the following advantage: it is a
machine interpretable language that allows the interpretation of data in an automated fashion.
Tools can therefore be implemented to provide help to users for:

− the description of data;

− the interpretation of data;

− the conversion of data to another format;

− the filtering of data to extract the useful information;

− the rehabilitation of old data, etc.

The use of a formal language that provides a physical separation of data and data description
has the following additional advantage: it does not interfere with the data that it describes. It
does not impose any format to the data. Such a formal language is able to describe the data as
they actually are. It is therefore able to describe “historical” data, as well as “future” data.

EAST is a language that meets these requirements. It allows the automated interpretation of
the data and the description of “historical” and “future” data.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-2 May 1997

EAST is a proposed language for the production of Data Description Records (DDR) in the
SFDU context. Figure 2-1 describes the general context of data exchange.

CA Manager

SFDU Generator

SFDU Builder
EDU

DDU Generator

DDR DED

DED
Generator

DDR
Generator

ADU

ADU
Builder

Telemetry

Dictionary Catalogue Data

SFDU Parser
EDU

DDR DEDData

Data Interpreter

Data Extractor

EAST Analyser

Customized Data

Structure Tree

ADID

T
R
A

S
F
E
R

N

T
R
A

S
F
E
R

N

Figure 2-1: Data Exchange in SFDU Context

A more detailed description of the SFDU context is provided in the SFDU - Structure and
Construction Rules Book (reference [4]).

Legend:

ADID Authority and Description Identifier
ADU Application Data Unit
CA Control Authority
DDU Description Data Unit
DED Data Entity Dictionary
EDU Exchange Data Unit

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-3 May 1997

2.2 ORGANIZATION OF THE INFORMATION CONVEYED BY EAST

An EAST data description is composed of two parts, called packages: the first one is called
“logical description” and the second one is called “physical description”.

EAST Data Description:

package name_of_the_logical_description is

Logical Description

end name_of_the_logical_description ;

package name_of_the_physical_description is

Physical Description

end name_of_the_physical_description ;

a) Logical Description

The logical part provides syntactic information and in some way semantic information. It
provides a large part of the information needed by an application user to understand the
data he has to deal with.

The logical part gives a name to every data item; i.e., it provides some meaning of the
data item (e.g., a COUNTER, a MEASUREMENT, a SATELLITE_IDENTIFIER, an
ACTIVITY_FLAG, etc.).

It describes the nature of every data item (e.g., it is a whole number, or a real number,
or a character string, or a bit string, etc.).

It gives syntactic information to every data item (e.g., it is a positive 16-bit integer, or a
32-bit real with a range of values from 0.1 to 1.0, or a 20 character string, or two-bit
enumeration with three permitted values, ON, OFF, ERROR, etc.).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-4 May 1997

The logical part also includes elements for the structuring of data; e.g.:

− a date is made of an integer representing the year, an integer representing
the month and an integer representing the day;

− the repetition of 100 measurements defines a data block, etc.

It also provides the ordering of the data items.

Subsection 3.2 of this document describes the logical part of an EAST data description.

b) Physical Description

The physical part provides pure syntactic information. It is a detailed description, i.e., a
bit level description that ensures a non-ambiguous interpretation of the data. This part
should only be used by the tool in charge of the data interpretation or of other
processing.

It provides machine dependent characteristics that determine the coding of real numbers,
the coding of integers, the way of storing tables, etc. For example:

− the location of the sign bit, the location of the exponent and the location of
the mantissa, and also the standard used to build the real (e.g., the IEEE
standard—see reference [8]) are provided for any real;

− the location of the most significant bit and the location of the least
significant bit are provided for any integer.

While EAST physical descriptions are written in a human readable language, manually
reading the physical part is not recommended, since it is likely to be long and
complicated.

Subsection 3.3 of this document describes the physical part of an EAST data
description.

A tool based on a Graphical User Interface (see Annex C) is considered to be highly necessary
to the user, so that he can write data descriptions in EAST without any knowledge of the
syntax. Nevertheless this document intends to explain how to use the syntax of EAST. If a
user wishes to generate EAST descriptions by hand (e.g., for testing purposes) another tool
(see Annex C) is necessary to check the correctness of the generated description.

A tool that parses EAST data descriptions and interprets data should also be used by
application users to access the data.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-5 May 1997

Figure 2-2 illustrates the tools that are recommended:

DDR Genera to r

D D R

DDR checke r

DDR

Exchange

Control
Center

Data Generator

Data

Data In terpreter

Data in
User Mach ine

F o r m a t

DDR

Data

Figure 2-2: Data and Data Description Records (DDR)

2.3 SCOPE OF THE DATA TO BE DESCRIBED

Data Descriptions may be at once the concern of people in many different contexts: project,
telemetry, telecommand, data processing or other results storage.

Whatever the context, data must be described and could be represented using a tree structure.
The structure of the data is represented by the “branches” of the tree, and the elementary or
scalar data by the “leaves”.

The following subsections present two examples of data, taken from different contexts
(telemetry and space mechanics), that are used throughout the document to illustrate the
EAST syntax.

The telemetry context provides many examples of exchanged data.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-6 May 1997

The figure 2-3 gives, as an example, the format of a source packet (see reference [3]).

Packet

Primary

Packet
Identification

Packet

Sequence

Control

Source Data

Length

Version
Number

Type_Id

Secondary
Header
Flag

Application
Process ID

Segmentation Source
Flag Sequence

Count

(3)

(1)

(1)

(11)

(2)
(14)

(16)

(variable) (variable)

 (variable)

(x) : Length in bits

Packet

Error

Control

Source

Data

Secondary

HeaderHeader

(48)

- Optional - - Optional -

Figure 2-3: Version 1 “Source Packet” Format

A branch or a leaf may be optional, depending on the value of another leaf. In the example,
“Secondary Header” is present or absent, depending on the value of “Secondary Header
Flag”. A leaf may be:

− a bit string, with specific bit patterns, representing a limited set of values (e.g., the
“Segmentation Flag”, which identifies the status of the packet);

− a whole number, with a predefined length (e.g., the 16 bit field “Source Data Length”);

− a real number, as illustrated in the following example.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 2-7 May 1997

Figure 2-4 provides an example of the space mechanics context:

Orbit Location

Orbit Plan Location Orbit Location Conic Description Satellite Location
within its plan on Orbit

Right Ascension
Ascending Node

Inclination Argument
of Perigee

Semi Major
Axis

Eccentricity True
Anomaly

(64)
(64)

(64) (64)
(64)

(64)

(x) : Length in bits

Figure 2-5 provides imaginary telemetry data, which could be, for example, the source data of
the packet (see figure 2-3).

Source Data Block

 Number of Measurements
(16)

Time Measurement

Data (Number of Measurements)

Data Item

(x) : Length in bits

(48) (32)

Figure 2-5: Source Data Block

The number of elements of a branch may depend on the value of another leaf. In the example,
the number of measurements determines the number of data items.

A Data Description Language must therefore make the description of scalar data easy and
must allow the data to be structured to varying levels of complexity.

Figure 2-4: Orbit Location

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-1 May 1997

3 PRODUCING EAST DATA DESCRIPTIONS

This section deals with the production of EAST data descriptions:

− subsection 3.1 describes the lexical elements used in any part of an EAST description;

− subsection 3.2 describes the information conveyed by the logical description part;

− subsection 3.3 describes the information conveyed by the physical description part;

− subsection 3.4 describes the relation between the logical information and the physical
information.

3.1 LEXICAL ELEMENTS OF EAST DATA DESCRIPTIONS

The text of a data description is a sequence of lexical elements, each composed of characters.
The 128 first characters of the “Latin Alphabet No. 1” character set (see reference [6]) are
allowed in an EAST description. A lexical element is either a delimiter, an identifier (which
may be a reserved word), a numeric literal, a character string, a string literal, or a comment.
The rules of composition are given in this section.

In some cases an explicit separator is required to separate adjacent lexical elements (namely,
when without separation, interpretation as a single lexical element is possible). A separator is
any of a space character, a control character, or the end of a line.

− A space character is a separator except within a comment, a string literal, or a space
character literal.

− Control characters other than horizontal tabulation are always separators. Horizontal
tabulation is a separator except within a comment.

− The end of a line is always a separator. It is understood to occur upon encountering the
following conditions:

• a Carriage Return, when it is not followed by a Line Feed;

• a Carriage Return/Line Feed pair, regardless of what follows;

• a Line Feed, when it is not followed by a Carriage Return;

• a Line Feed/Carriage Return pair, regardless of what follows.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-2 May 1997

A delimiter is either one of the following special characters:

& ' () * + , - . / : ; < = > |

or one of the following compound delimiters each composed of two adjacent special
characters:

=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter except
if this character is used as a character of a compound delimiter, or as a character of a
comment, string literal, character literal, or numeric literal.

A comment starts with two adjacent hyphens and extends up to the end of the line. A
comment can appear on any line of a description.

An identifier is a character string composed of letters, digits and underline characters. All
characters of an identifier are significant, including any underline character inserted between a
letter or a digit and an adjacent letter or digit. Identifiers differing in the use of corresponding
upper- and lowercase letters are considered to be the same.

A numeric literal is a character string, composed of letters, digits and underline characters,
that represents a numeric value.

See reference [1] for a detailed definition of the lexical elements.

3.2 LOGICAL DESCRIPTIONS

3.2.1 OVERVIEW

In order to list some of the usual kinds of transported data, both contexts (telemetry and space
mechanics) presented in the previous section are used to illustrate the information conveyed in
EAST logical descriptions.

The logical part of an EAST description provides the information that is required by an
application user to understand the data. Each data item is described using a programming
language concept, called type. A type is a model, defined once, that is used to create many
occurrences of the model.

A type has a name: this name, if well chosen, is a way to indicate the meaning of the model.

A type has a nature: the model may represents a whole number or a real number, or a
character string, etc. The syntax used to define a type varies according to the nature of the
type. Depending on the nature of the type, some additional information is given; in most of
the cases, the list (or the range) of permitted values is defined.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-3 May 1997

There are two kinds of types:

− The basic types, also called atomic types, that are elementary types. EAST allows the
definition of enumeration types (see 3.2.2), integer types (see 3.2.4) and real types (see
3.2.5). EAST provides a predefined basic type: character (see 3.2.3).

− The composite types, also called structuring types, that are composed of basic types or
composite types. EAST allows the aggregation of elements with the definition of record
types (see 3.2.6 and 3.2.11) and the repetition of elements with the definition of array
types (see 3.2.7). EAST provides a predefined composite type: character string (see
3.2.3).

When defined, a type can be used to define other types:

− by aggregation for the definition of composite types;

− by restriction for the definition of subtypes (see 3.2.8).

A type can be also used to define occurrences of the data:

− subsection 3.2.9 describes the definition and the use of variables;

− subsection 3.2.10 describes the definition and the use of constants.

The logical part of an EAST data description is composed of two sections: one for the
definition of the data models (also called section for the declaration of types) and one for the
definition of data occurrences (also called section for the declaration of variables). The data
models are defined using type, subtype and constant declarations, while the data occurrences
are defined using variable and constant declarations.

The first definition of a variable delimits the two sections. Any declaration that occurs before
the first variable definition belongs to the section for the declaration of types. Any declaration
that occurs after the first variable definition (including the first variable declaration itself)
belongs to the section for the declaration of variables.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-4 May 1997

The logical part is structured as follows:

Package name_of_logical_description_part is

Section for the Declaration of Types: Definition of the Data Models

Section for the Declaration of Variables: Definition of the Data Occurrences

End name_of_logical_description_part;

-- declarations for variables and constants

-- declarations for types, subtypes and constants

Some of the frequently asked questions about the logical description part of EAST data
descriptions are summarized in 3.2.13.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-5 May 1997

3.2.2 ENUMERATION TYPES

Enumeration types are used each time the description of a limited set of values is needed.

In a telemetry context, a block of data usually begins with a synchronization signal. This signal
consists of a specific bit pattern, which represents a value. This synchronization field may
have, for example, a 16-bit length. It may be filled with two alternative values, for example
one for a primary block (called PRIMARY_SYNCHRO) and one for a secondary block
(called SECONDARY_SYNCHRO). This signal is described using an EAST enumeration
type.

type SYNCHRONIZATION_VALUE is (PRIMARY_SYNCHRO,
SECONDARY_SYNCHRO);

Example 3-1: Enumeration Type Declaration

In the example, “PRIMARY_SYNCHRO” represents the name (i.e., the meaning) given to
one of the enumeration literals associated with the type. If there is a need to express the bit
pattern of this synchronization value (for example: the hexadecimal value 0A08), the
enumeration representation clauses of the EAST Syntax allow a user to formulate this integer
value, in four possible ways(F1):

– 2#0000101000001000#1 -- binary integer
– 2568 -- decimal integer
– 8#5010# -- octal integer
– 16#0A08# -- hexadecimal integer

In the same way, if the bit pattern of the other synchronization value,
SECONDARY_SYNCHRO, is the hexadecimal value CD04, then this integer value can be
expressed in four possible ways:

– 2#1100110100000100# -- binary integer
– 52484 -- decimal integer
– 8#146404# -- octal number
– 16#CD04# -- hexadecimal integer

NOTE − If no base is specified, 10 is the default base.

1 The syntax is: base # value #

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-6 May 1997

The following example illustrates enumeration representation clauses using hexadecimal
values:

for SYNCHRONIZATION_VALUE use (PRIMARY_SYNCHRO => 16#0A08#,
SECONDARY_SYNCHRO => 16#CD04#);

Example 3-2: Enumeration Representation Clauses Declaration

The EAST length clauses are used to specify the field length (in bits)(F2). In the example, the
synchronization signal is a 16-bit field:

for SYNCHRONIZATION_VALUE'size use 16; -- bits

Example 3-3: Length Clause Declaration

NOTE − 16 bits are necessary to code the hexadecimal value CD04.

The use of enumeration types can be extended to other applications. Each time a data item
(variable) can have a limited set of values, an enumeration type is advisable. The definition of
an enumeration type provides indeed the meaning of every value of the type. The use of
enumeration types improves the semantic meaning of the descriptions (see 5.2).

As an example, in the figure 2-3, the Segmentation Flag field is used to indicate the status of a
long message-oriented source packet that has been broken into shorter communications-
oriented segments. This status may have four different values, corresponding to the four
segment types: one value for a first segment, one value for a continuation segment, one value
for a last segment and one value for an unsegmented packet. This status is described by the
following EAST declarations:

type STATUS is (CONTINUATION_SEGMENT,
FIRST_SEGMENT,
LAST_SEGMENT,
UNSEGMENTED_PACKET);

for STATUS'size use 2;
for STATUS use (CONTINUATION_SEGMENT => 2#00#,

FIRST_SEGMENT => 2#01#,
LAST_SEGMENT => 2#10#,
UNSEGMENTED_PACKET => 2#11#);

Example 3-4: Complete Enumeration Type Definition

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-7 May 1997

In the same example, the “Version Number” field is used to specify the packet format. At
present only 2 versions of the packet are permitted, but 3 bits are reserved. This packet format
is also described using an enumeration type, as follows:

type VERSION is (VERSION_1 , VERSION_2);
for VERSION'size use 3; -- bits
for VERSION use (VERSION_1 => 2#000# , VERSION_2 => 2#100#);

Example 3-5: Complete Enumeration Type Definition

NOTE − The field length of the enumeration type VERSION could have been specified with
a minimal value: 1 bit is necessary to implement 2 enumeration literals. But it is not
an absolute necessity to specify a minimal length clause. In this case, by adding
new version numbers, future variations of the source packet structure become
possible.

Enumeration literals may also be character literals. The following example defines the
ROMAN_NUMERAL type:

type ROMAN_NUMERAL is (‘I’ , ‘V’ , ‘X’ , ‘L’ , ‘C’ , ‘D’ , ‘M’);
for ROMAN_NUMERAL use (‘I’ => 1, ‘V’ => 5, ‘X’ => 10, ‘L’ => 50, ‘C’ =>100,

‘D’ => 500, ‘M’ => 1000);
for ROMAN_NUMERAL'size use 16;

Example 3-6: Enumeration Type Declaration using Characters

Rules about the Usage of Enumeration Types

Rule 1 The enumeration literals listed in an enumeration type definition are identifiers or
character literals. See section 3.2.1.2. of reference [1].

Rule 2 The size of an enumeration type must always be provided; i.e., a length clause is
mandatory. See section 3.2.4.1. of reference [1].

Rule 3 An enumeration representation clause is optional. See section 3.2.4.2. of reference
[1].

Rule 4(F3) If there is an enumeration representation clause, then each literal of the
enumeration type must be provided with a unique bit pattern. The numeric value associated
with this bit pattern must satisfy the ordering relation of the type (i.e., must increase). If no
enumeration representation clause is provided, then default integer codes are presumed for
binary encoded enumeration types: the value of the first listed enumeration literal is zero; the
value for each other enumeration literal is one more than for its predecessor in the list. If no
enumeration representation clause is provided, the enumeration type is maybe ASCII encoded
according to the physical part of the EAST description (see 3.3.5). See sections 3.2.4.2. and
3.3.3.2 of reference [1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-8 May 1997

A special case of enumeration types: the Booleans(F4)

EAST can be used to describe specific Boolean types, which gives more powerful semantic
meaning than the classic “Boolean” type available in some programming languages. A classic
Boolean type answers a question (it is TRUE or FALSE). But it is more meaningful to
express the kind of question the Boolean answers. The following examples provide an
illustration of the expressiveness of specific Boolean types:

type SATELLITE_STATUS is (HIDDEN , VISIBLE);
for SATELLITE_STATUS use (HIDDEN => 0 , VISIBLE => 1);
for SATELLITE_STATUS'size use 1; -- bit

type PRESENCE_FLAG is (ABSENT, PRESENT);
for PRESENCE_FLAG use (ABSENT => 0 , PRESENT => 1);
for PRESENCE_FLAG'size use 8; -- bits

type PACKET_TYPE is (TELEMETRY, TELECOMMAND);
for PACKET_TYPE use (TELEMETRY => 0 , TELECOMMAND => 1);
for PACKET_TYPE'size use 1; -- bit

Example 3-7: Some Substitutes to Boolean Types

NOTE − The PRESENCE_FLAG is an enumeration type requiring 1 bit, but the size is
given as 8 bits: this is a case of a forced size.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-9 May 1997

3.2.3 CHARACTER TYPES AND CHARACTER STRING TYPES

EAST provides the predefined type “CHARACTER”. This type has been defined as an eight-
bit coded enumeration type composed of the 256 ISO8859-1 (Latin Alphabet No. 1) coded
characters, containing 191 printable characters. The full character set is defined in Annex B of
the EAST Specification document (reference [1]) and in the Latin Alphabet No. 1 document
(reference [6]).

NOTE − A predefined EAST type is a type provided by EAST that can be used without
having been declared.

Other character types may be derived (or subtyped) from the predefined EAST
CHARACTER type. For example, a character type which only accepts capital letters is
defined as follows:

subtype CAPITAL_LETTER is CHARACTER range ‘A’ .. ‘Z’;

Example 3-8: Character Type Declaration

For the description of character strings, EAST provides the predefined type “STRING”. A
possible way to use the predefined EAST STRING type is to subtype it, i.e., to rename it and
optionally to specify the size of the actual character string.

In the next example, the EAST declaration defines a 32 character string type:

subtype NAME is STRING (1 .. 32);

Example 3-9: Character String Type Declaration

More explanations about subtypes are provided in 3.2.8.

Rule 5 The types CHARACTER and STRING(F5) do not have to be declared in a data
description. They are predefined types of EAST. See section 3.2.1.1. of reference
[1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-10 May 1997

3.2.4 INTEGER TYPES

Integer types are used to describe whole numbers.

The definition of an integer type specifies the range of values taken into account. In the first
example (see figure 2-3), the “Source Sequence Count” field is a 14-bit field, which contains a
straight sequential count (modulo 16384) of each generated packet. Such a counter is
described using an EAST integer type as follows:

type COUNTER is range 0 .. 16383;

Example 3-10: Integer Type Declaration

In this example, 0 is the lower bound, i.e., the minimum value of the type, and 16383 is the
upper bound, i.e., the maximum value of the type.

The EAST length clauses must be used to specify the integer size:

for COUNTER'size use 14; -- bits

Example 3-11: Length Clause Declaration

Data products are often dated. The CCSDS recommends standard dates and times. For
example, the DATE_YMD provides the year, the month and the day within the Gregorian
calendar. The binary representation of this type is described using integer types as follows:

type YEAR is range 0 .. 9999;
for YEAR'size use 16;

type MONTH is range 1 .. 12;
for MONTH'size use 8;

type DAY is range 1 .. 31;
for DAY 'size use 8;

Example 3-12: Complete Integer Type Declarations

Rule about the Usage of Integer Types

Rule 6 The size of an integer type must always be specified. See section 3.2.4. of
reference [1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-11 May 1997

3.2.5 REAL TYPES

The definition of a real type specifies the number of significant digits and may specify
additionally the range of values taken into account. The EAST length clauses must be used to
specify the real size.

In the figure 2-4, the orbit location is defined by the semi-major axis in kilometers, the
eccentricity, the inclination in degrees, the argument of perigee in degrees, the right ascension
in ascending node in degrees and the true anomaly in degrees. All these measurements are
described using floating point reals. But the range of values or the precision of the
measurements is not the same for kilometers or degrees, as shown in the following example:

type ANGULAR_DEGREE is digits 8 range -180.0 .. 180.0;-- the range is specified
for ANGULAR_DEGREE'size use 64; -- bit

type KILOMETERS is digits 15; -- the range is not specified
for KILOMETERS'size use 64;

Example 3-13: Complete Real Type Declarations

NOTE − If the real type declaration specifies no range, the range is by default the largest
range that can be implemented within the specified number of bits accommodating
the number of significant digits. The default range also depends on the convention
used to represent the binary values of the real types (see 3.3.4).

Rule about the Usage of Real Types

Rule 7 The size of a real type must always be specified. See section 3.2.4. of reference [1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-12 May 1997

3.2.6 RECORD TYPES

As it is often necessary to aggregate different types of data, EAST provides a concept of
record to structure “atomic” data items or even other aggregations. The aggregated data items
are explicitly named, when they are used in a record type definition. Every component of an
aggregation is therefore declared as follows:

Data_Instance_Name: Data_Type_Name;

NOTE − If the Data_Type_Name corresponds to an array type for which the number of
elements is not specified at definition time, then the Data_Type_Name is followed
in the component declaration by explicit indices that specify the actual number of
elements (see 3.2.7)

In the case of the figure 2-3, the leftmost branch of the tree would be:

-- “Atomic” types
type VERSION is (VERSION_1 , VERSION_2);
for VERSION'size use 3;
for VERSION use (VERSION_1 => 2#000#, VERSION_2 => 2#100#);

type PACKET_TYPE is (TELEMETRY , TELECOMMAND);
for PACKET_TYPE'size use 1;
for PACKET_TYPE use (TELEMETRY => 0 , TELECOMMAND => 1);

type PRESENCE_FLAG is (ABSENT , PRESENT);
for PRESENCE_FLAG'size use 1;
for PRESENCE_FLAG use (ABSENT => 0, PRESENT => 1);

type PROCESS_IDENTIFICATION is (WORKING , IDLE);
for PROCESS_IDENTIFICATION'size use 11;
for PROCESS_IDENTIFICATION use (WORKING => 2#00000000000#,

IDLE => 2#11111111111);
.../...

Example 3-14: Record Type Declaration (1 of 2)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-13 May 1997

.../...
-- Structuring type
type PACKET_IDENTIFICATION_TYPE is

record
VERSION_NUMBER : VERSION;
PACKET : PACKET_TYPE;
SECONDARY_HEADER_FLAG : PRESENCE_FLAG;
APPLICATION_PROCESS_ID : PROCESS_IDENTIFICATION;

end record;
for PACKET_IDENTIFICATION_TYPE'size use 16;

Example 3-14: Record Type Declaration (2 of 2)

NOTE − As for atomic data type specification (enumeration, integer and real types) a length
clause specifies the size of a record.

Within a structuring type, it is also possible to specify that a kind of data is present in some
cases. For example, the SECONDARY_HEADER of figure 2-3 is only present if the
SECONDARY_HEADER_FLAG has the value PRESENT:

type PACKET_HEADER (
SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT) is
record

PRIMARY_HEADER: PRIMARY_HEADER_TYPE;
-- see previous record type declaration
case SECONDARY_HEADER_FLAG is

when PRESENT =>
SECONDARY_HEADER: SECONDARY_HEADER_TYPE;

when ABSENT =>
null ; -- no corresponding field

end case;
end record;

Example 3-15: Record Type Declaration with Optional Field

NOTES

1 In this example, the instance SECONDARY_HEADER_FLAG of the type
PRESENCE_FLAG (that has the default value PRESENT) determines (i.e.,
discriminates) the presence of another component (SECONDARY_HEADER). This
component is called a discriminant.

2 In this example, the length of the record depends on the value of
“SECONDARY_HEADER_FLAG” (the discriminant). In one case, the length is the
length of the discriminant + the length of the primary header; in the other one, the
length of the discriminant + the length of the primary header + the length of the
secondary header. No length clause is therefore provided for the record.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-14 May 1997

Rules about the usage of record types

Rule 8 A component on which depends the existence of other components is called a
discriminant for the record type. The alternative lists of components are called
variants of the record. See section 3.2.1.6. of reference [1].

Rule 9 A length clause must be provided for a record, every time it is possible. In some
cases, no length clause can be provided for the record, because the length is
undefined. See section 3.2.4.1. of reference [1].

The EAST syntax requires a default value for each discriminant (if any) in a record type
declaration. A default value does not preclude any possible value for the discriminant of the
actual data. In the case of the type “PACKET_HEADER”, the default value could have been
ABSENT or PRESENT (or in fact any allowed value for the enumeration type
“PRESENCE_FLAG”).

Another rule about the usage of record types

Rule 10 If a record contains one or more discriminants, it is mandatory to provide a default
discriminant value for each of them. See section 3.2.1.6. of reference [1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-15 May 1997

3.2.7 ARRAY TYPES

Array types are used to describe repetitions. If a telemetry contains a repetition of a certain
number of measurements or blocks of measurements, this number being either a constant or a
variable, this repetition would be defined using an array type. The next example defines an
array type which has a constant number of elements:

type MEASUREMENT is digits 4; -- real type with a precision of 4 significant digits
for MEASUREMENT'size use 32;

type TEN_MEASUREMENT_BLOCK_TYPE
is array (1 .. 10) of MEASUREMENT;

for TEN_MEASUREMENT_BLOCK_TYPE'size use 320; -- 10*32 bits

Example 3-16: Array Type Declaration with a Constant Number of Elements

In this example, a length clause specifies the size of the array, because its size is known; i.e.,
the array has a constant number of elements. The declaration of an instance of this type is:

BLOCK : TEN_MEASUREMENT_BLOCK_TYPE;

Example 3-17: Array Instance Declaration

If there is a need to describe data of the same type for which the number of occurrences
varies, then an array with unlimited size (specified with “range <>”) is the suitable structure.
The next example defines an array type which has a variable number of elements:

type NUMBER is range 0 .. 65535;
for NUMBER'size use 16;

type UNLIMITED_MEASUREMENT_BLOCK_TYPE
is array (NUMBER range <>) of MEASUREMENT;

Example 3-18: Array Type Declaration with a Variable Number of Elements

NOTES

1 In this example, no length clause specifies the size of the array, because its size is not
known.

2 The expression “NUMBER range <>” means that the range (or the index) of the array
in an instance of this array type will be defined by a range of NUMBER (i.e., by two
values of the type NUMBER which specify the bounds of the array index: “1 .. 10” or
“1 .. 100” in example 3-19).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-16 May 1997

Using this array type declaration, possible declarations would be:

A_10_MEASUREMENT_BLOCK :
UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. 10);

A_100_MEASUREMENT_BLOCK :
UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. 100);

Example 3-19: Array Instance Declarations

When the number of elements of an array is specified “at run time” within the data block, the
suitable EAST structure to describe it is a record type including a component that specifies the
size of the array and the array itself.

-- atomic type declarations
type NUMBER is range 0 .. 65535;
for NUMBER'size use 16;

type MEASUREMENT is digits 4;
for MEASUREMENT'size use 32;

-- array type definition
type UNLIMITED_MEASUREMENT_BLOCK_TYPE is array

(NUMBER range <>) of MEASUREMENT;

-- structuring type definition
type DATA_SET(NUMBER_OF_ELEMENTS : NUMBER := 1) is record

DATA : UNLIMITED_MEASUREMENT_BLOCK_TYPE
(1 .. NUMBER_OF_ELEMENTS);

end record;

Example 3-20: Use of an Array Type with a Variable Number of Elements

The declaration of a datum of this type is:

A_DATA_SET : DATA_SET;(F6)

Example 3-21: Array Instance Declaration

NOTE − The instance A_DATA_SET corresponds to a data item of the type DATA_SET,
the number of elements being not known “at definition time” but only specified at
“run time”. A data instance is composed of a number of elements and
measurements (as many as specified by the leading number).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-17 May 1997

A special use of arrays with variable number of elements

When unlimited array types (also called unconstrained array types) are limited in a declaration,
null arrays can serve to specify that there is no data of this particular type within a given data
set. To declare null arrays, the value of the lower bound of the array index has to be greater
than the upper bound.

Using the record type declaration of the previous example:

A_DATA_SET : DATA_SET(0); -- zero element

Example 3-22: Null Array Declaration

NOTE − In this case, the lower bound (1) of the index of the array DATA is greater than
the upper bound (0), which means that the array has no component. Note that the
type NUMBER must allow values less than the lower bound of the array index.

Rules about the usage of array types

Rule 11 A length clause must be provided for an array, every time it is possible. For
unconstrained array types, no length clause can be provided because they have an
undefined number of elements. The number of elements is specified at the
declaration of a data of this type. See section 3.2.4.1. of reference [1].

Rule 12 In the case of an unconstrained array, the constraint (i.e., the number of elements)
is given to the instance at its declaration. See section 3.2.1.5. of reference [1].

Rule 13 If the lower bound of an index range is greater than the upper bound, the
corresponding array row/column has no component. See section 3.2.1.5. of
reference [1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-18 May 1997

3.2.8 SUBTYPES

EAST allows the specification of user types to describe families of data. EAST provides a
facility to define sub-families, i.e., families of the same type but with a different spectrum of
data. In other words, EAST allows the definition of subtypes to restrict the set of values of the
initial type. The subtyping can be used to rename types, if the initial set of values is not
restricted in the subtype declaration. See below some examples:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
for DAY 'size use 8;
subtype RESTING_DAY is DAY range SAT .. SUN;
subtype WORKING_DAY is DAY range MON .. FRI;

type DEGREE is digits 15;
for DEGREE'size use 64;
subtype ANGULAR_DEGREE is DEGREE range -180.0 .. 180.0;
subtype CELSIUS_DEGREE is DEGREE range -273.0 .. 100000000000000.0;

subtype IDENTIFIER is STRING; -- renaming subtype

Example 3-23: Subtype Declarations

NOTES

1 No length clauses are provided in subtype definitions.

2 A subtype is considered to be a type, so it is permissible to subtype subtypes.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-19 May 1997

3.2.9 VARIABLES

Variables are used to name explicitly the exchanged data. Variables are declared using types
that have been previously declared.

There is a different use of type declarations and variable (data) declarations. A type
declaration is used to describe the kind of a “generic datum”. The declaration of a variable is
used to explicitly declare a physical occurrence of a datum of this type. For example, the
declaration of ANGULAR_DEGREE, which is a 64 bit real type, can be used to declare many
data occurrences (INCLINATION, TRUE_ANOMALY, etc.).

-- declaration of types
type ANGULAR_DEGREE is digits 8 range -180.0 .. 180.0;
for ANGULAR_DEGREE'size use 64;
type KILOMETERS is digits 15;
for KILOMETERS'size use 64;

-- declaration of variables
SEMI_MAJOR_AXIS : KILOMETERS;
INCLINATION : ANGULAR_DEGREES;
ARGUMENT_OF_PERIGEE : ANGULAR_DEGREES;
RIGHT_ASCENSION_IN_ASCENDING_NODE : ANGULAR_DEGREES;
TRUE_ANOMALY : ANGULAR_DEGREES;

Example 3-24: Declaration of Variables

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-20 May 1997

3.2.10 CONSTANTS

EAST provides a facility for expressing constants. Constants of any type may be declared. A
constant is not a type. A constant has a static value. See below some examples of constant
declarations:

-- type declarations
type PACKET_TYPE is (TELEMETRY , TELECOMMAND);
for PACKET_TYPE use (TELEMETRY => 0 , TELECOMMAND => 1);
for PACKET_TYPE'size use 1;

type NUMBER is range 0 .. 65535;
for NUMBER'size use 16;

-- constant declarations
DORIS_PACKET : constant PACKET_TYPE := TELEMETRY;

-- an enumeration constant
MAX_NUMBER : constant NUMBER := 255;

-- an integer constant

Example 3-25: Constant Declarations

Constants can be used mainly for two purposes:

− as range bounds in type or subtype definitions, or in other constant declarations (the
final purpose being to be used as range bounds); in this case, they are declared in the
section of type declarations;

− as markers (i.e., end-delimiters of repetitions) when defined in the section for the
declaration of variables.

3.2.10.1 Use of constants in the section of type declarations

The constant MAX_NUMBER, defined in the example 3-25, can be used in other type or
constant definitions as follows:

type MEASUREMENT_BLOCK_TYPE
is array (1 .. MAX_NUMBER) of MEASUREMENT;
-- use of the constant in an array type declaration

type MEASUREMENT_COUNTER is range 0 .. MAX_NUMBER;
-- use of the constant in an integer type declaration

MEAN_NUMBER : constant NUMBER := (MAX_NUMBER + 1) / 2;
-- use of a constant in another constant declaration

Example 3-26: Use of Constants (1)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-21 May 1997

A constant that is declared in the section of type declarations is either an integer constant, a
real constant or an enumeration constant.

A number declaration is a special form of a constant declaration with no specified type. See
below some examples:

PI : constant := 3.1415926536; -- a real number
ZERO : constant := 0; -- an integer number

Example 3-27: Number Declarations

A number can be used in a constant definition as follows:

RIGHT_ANGLE : constant := PI/2;
-- use of a constant in another constant declaration

Example 3-28: Use of Constants (2)

Non-typed constants (or numbers) can also be used in range definitions. It is an EAST facility
for the definition of types. The following definitions,

MIN : constant := 1;
MAX : constant := 255;
type VALUE is range MIN .. MAX;

Example 3-29: Use of Non-typed Constants (1)

are strictly equivalent to the following definition:

type VALUE is range 1 .. 255;

Example 3-30: Use of Non-typed Constants (2)

No implementation types are associated with these numbers. In the previous examples, the
main difference between MAX_NUMBER (defined in the example 3-25) and MAX (defined
in the example 3-29) is the knowledge or non-knowledge of the representation of the values:
MAX_NUMBER is a 16-bit unsigned integer, while MAX is physically undefined (i.e., is just
a logical concept).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-22 May 1997

3.2.10.2 Use of constants in the section for the declaration of variables

A constant can be used as a marker when its definition occurs after a declaration of a variable.
In this case, the following convention is applicable:

Rule 14 The variable that is declared immediately before the constant occurs an
undetermined number of times, the last instance being followed by the constant
value. See section 3.2.3.2.2. of reference [1].

The following example illustrates the use of markers:

-- Section of Data Type Declarations
type DEGREE is digits 15;
for DEGREE’size use 64;
.../...

-- Section of Data Occurrence Declarations
MEASUREMENT : DEGREE;
END_OF_MEASUREMENT_BLOCK : constant STRING := “END”;

Example 3-31: Use of Constants as Markers

Figure 3-1 represents the data described by the previous EAST description:

64 bits

Measurement Measurement Measurement.../... "END"

24 bits64 bits 64 bits

Figure 3-1: Data Block ended by a Marker

A constant that is declared in the section for the declaration of variables is an integer constant,
an enumeration constant, a character constant or a character string constant.

NOTE − Real constants are not allowed as markers because markers should be
unambiguously recognized. The representation of a real value is a floating point
representation, and is as such an approximation of the original value.

A special case of markers : EOF

A special marker is the "end of file". This marker is encountered at the end of the data file. It
does not correspond to any bit pattern to be found in the data. File management systems do
not indeed restore the "end of file".

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-23 May 1997

It is encountered at the end of the data file. The following convention is adopted: the type of
the Marker is an EAST predefined type, called EOF. No explicit value is associated with this
constant since this value is unknown. This is the only case of a constant declaration where the
value is absent.

NOTE − The EOF marker can only be used once in an EAST description. It is the last
declaration of the logical description part.

The next example presents the description of a data file that contains a header and n values (n,
being undetermined).

HEADER : HEADER_TYPE; -- any type

VALUE : COEFFICIENT; -- COEFFICIENT is a real type defined in 3.2.1.4 as:
-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;

END_OF_COEFFICIENTS : constant EOF ;

Example 3-32: EOF Marker Declaration

Only typed constants are allowed as markers.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-24 May 1997

3.2.11 RECORD REPRESENTATION CLAUSES

Subsection 3.2.6 recommends record types for the specification of structured data. In order to
specify the exact location of data items in a record, EAST provides record representation
clauses(F7).

A record representation clause specifies the storage representation of the record, that is, the
relative position and the size of the record components (including discriminants if any).

The following example illustrates a simple kind of record and its associated representation
clauses:

0 63 64 127

Right_Ascension_Ascending_Node
(64 bits)

Inclination
(64 bits)

type DEGREE is digits 15;
for DEGREE'size use 64;

type ORBIT_PLAN_LOCATION is record
RIGHT_ASCENSION_ASCENDING_NODE : DEGREE;
INCLINATION : DEGREE;

end record;
for ORBIT_PLAN_LOCATION use

record
RIGHT_ASCENSION_ASCENDING_NODE at 0 range 0 .. 63;
INCLINATION at 0 range 64 .. 127;

end record;
for ORBIT_PLAN_LOCATION'size use 128; -- bits

Example 3-33: Complete Record Type Declaration

This example illustrates the fact that there is no gap between components of a record, and that
the component locations do not overlap.

NOTE − The expression “at 0” in the component locations means that the range that follows
the expression is specified relatively to the beginning (i.e., location 0) of the
record. More explanations about this expression are provided on page 3-32.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-25 May 1997

The next example shows that component locations may overlap if they do not belong to the
same alternative list of components:

0 15 16 17 18 337

Synchro
(16 bits)

Flag
(2 bits)

House_Keeping_Block
(320 bits)

Measurement_Block
(320 bits)

type ACTIVITY_FLAG is (HOUSE_KEEPING, MEASUREMENT, INCIDENT);
for ACTIVITY_FLAG 'size use 2;

type STRUCTURE (FLAG : ACTIVITY_FLAG := MEASUREMENT) is record
SYNCHRO: SYNCHRONIZATION_VALUE;
case FLAG is

when HOUSE_KEEPING =>
HOUSE_KEEPING_BLOCK : BLOCK_TYPE;

when MEASUREMENT =>
MEASUREMENT_BLOCK : BLOCK_TYPE;

when others =>
null ;

end case;
end record;
for STRUCTURE use
record

SYNCHRO at 0 range 0 .. 15;
FLAG at 0 range 16 .. 17;
HOUSE_KEEPING_BLOCK at 0 range 18 .. 337;
MEASUREMENT_BLOCK at 0 range 18 .. 337;

end record;
for STRUCTURE'size use 336; -- bits

Example 3-34: Complete Record Type Declaration with Variants

The clause “when others =>” is mandatory if all the discriminant values are not explicitly
named in the record type definition. It represents all the other discriminant values. In other
words, all the occurrences of the discriminant must be named, either explicitly or implicitly, in
a case statement.

NOTE − In this example, “when others =>” could have been replaced by “when INCIDENT
=>”.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-26 May 1997

One of the most interesting uses of record representation clauses is illustrated in the following
example, which explains that component representation clauses do not have to appear in the
same order as the declaration order. The EAST Syntax requires indeed the fixed elements to
be declared before the optional ones in a structure; nevertheless, in record representation
clauses, one or more elements of the fixed part are allowed to be put after a variant part, if
and only if the variant part has a constant length.

0 9 10 11 31 32 63
Header
(10 bits)

Flag
(1 bit)

Optional_Part_1
(21 bits)

Fixed_Part
(32 bits)

Optional_Part_2
(21 bits)

type STATUS is (OPEN, CLOSED);
for STATUS'size use 1;

type STRUCTURE (FLAG : STATUS := OPEN) is record
HEADER : HEADER_TYPE;
FIXED_PART : FIXED_PART_TYPE;
case FLAG is

when OPEN =>
OPTIONAL_PART_1 : OPTIONAL_PART_1_TYPE;

when CLOSED =>
OPTIONAL_PART_2 : OPTIONAL_PART_2_TYPE;

end case;
end record;
-- But to describe the actual data type,
-- the use of record representation clauses is necessary.
for STRUCTURE use
record

HEADER at 0 range 0 .. 9;
FLAG at 0 range 10 .. 10;
OPTIONAL_PART_1 at 0 range 11 .. 31;
OPTIONAL_PART_2 at 0 range 11 .. 31;
FIXED_PART at 0 range 32 .. 63;

end record;
for STRUCTURE'size use 64; -- bits

Example 3-35: Use of Record Representation Clauses

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-27 May 1997

The next example illustrates a record for which the size is not known a priori, and for which
the record representation clause is partly provided.

0 127 128 143 144 ?

Date
(128 bits)

Block_Size
(16 bits)

Block
(variable)

type STRUCTURE (BLOCK_SIZE : NUMBER := 1) is record
DATE : DATE_FORMAT;
BLOCK : UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. BLOCK_SIZE);

end record;

for STRUCTURE use
record

DATE at 0 range 0 .. 127;
BLOCK_SIZE at 0 range 128 .. 143;

end record;

Example 3-36: Incomplete Record Representation Clause (1) Declaration

In this case, a representation clause cannot be given for the block, because the size (i.e., the
location of the end of the block) is not known a priori. A length clause cannot therefore be
provided.

By default, all components of a data block are contiguous. In this case, no representation
clause is provided for the component BLOCK, but its location begins by default at bit 144.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-28 May 1997

The next example is another illustration of a record for which the record representation clause
is partly provided.

0 127 128 143 144
?

 ? ?

Date
(128 bits)

Block_Size
(16 bits)

Block
(variable)

Trailer
(16 bits)

type STRUCTURE (BLOCK_SIZE : NUMBER := 1) is record
DATE : DATE_FORMAT;
BLOCK : UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. BLOCK_SIZE);
TRAILER : TRAILER_TYPE;

end record;

for STRUCTURE use
record

DATE at 0 range 0 .. 127;
BLOCK_SIZE at 0 range 128 .. 143;

end record;

Example 3-37: Incomplete Record Representation Clause (2) Declaration

As in the previous example, a representation clause cannot be given for the block, because the
size is not known a priori. A representation clause cannot be given for the trailer also, because
its exact location is not known at definition time. Its size is known (16 bits) but it follows a
component which has no representation clause. The trailer begins when the block ends.

In this case, the order of the components is not fully determined by the record representation
clause. The order of the components, for which a representation clause is missing, is
determined according to the order of these components within the record type definition.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-29 May 1997

The following example illustrates a record for which the size is not known a priori, but for
which a record representation clause completely specifies the storage representation of the
record.

0 9 10 11 63

Header
(10 bits)

Flag
(1 bit)

Optional_Part_1
 (53 bits)

Optional_Part_2
(21 bits)

11 31

type STATUS is (OPEN, CLOSED);
for STATUS'size use 1;

type STRUCTURE (FLAG : STATUS := OPEN) is record
HEADER : HEADER_TYPE;
case FLAG is

when OPEN =>
OPTIONAL_PART_1 : OPTIONAL_PART_1_TYPE;

when CLOSED =>
OPTIONAL_PART_2 : OPTIONAL_PART_2_TYPE;

end case;
end record;

for STRUCTURE use
record

HEADER at 0 range 0 .. 9;
FLAG at 0 range 10 .. 10;
OPTIONAL_PART_1 at 0 range 11 .. 63;
OPTIONAL_PART_2 at 0 range 11 .. 31;

end record;

Example 3-38: Complete Record Representation Clause Declaration

A length clause cannot be provided for the whole structure, because the size of the optional
part is not known a priori (53 bits or 21 bits).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-30 May 1997

A component can depend, at the same time, on the values of many discriminants. The next
example illustrates a record with two discriminants. Some components depend, at the same
time, on the values of two enumeration components.

0 15 16 17 18 25 26 345

Synchro
(16 bits)

Flag
(2 bits)

Time
(8 bits)

Monday_House_Keeping_Block
(320 bits)

Other_House_Keeping_Block
(320 bits)

Measurement_Block
(320 bits)

type ACTIVITY_FLAG is (HOUSE_KEEPING, MEASUREMENT, INCIDENT);
for ACTIVITY_FLAG 'size use 2;

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
for DAY 'size use 8;

type STRUCTURE (FLAG : ACTIVITY_FLAG := MEASUREMENT;
TIME : DAY := MON) is record

SYNCHRO: SYNCHRONIZATION_VALUE;
case FLAG is

when HOUSE_KEEPING =>
case TIME is

when MON =>
MONDAY_HOUSE_KEEPING_BLOCK : BLOCK_TYPE;

when TUE .. SUN =>
OTHER_HOUSE_KEEPING_BLOCK : BLOCK_TYPE;

end case;
when MEASUREMENT=>

MEASUREMENT_BLOCK : BLOCK_TYPE;
when others =>

null ;
end case;

end record;
.../...

Example 3-39: Complete Record Type Declaration with 2 Discriminants (1 of 2)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-31 May 1997

.../...
for STRUCTURE use
record

SYNCHRO at 0 range 0 .. 15;
FLAG at 0 range 16 .. 17;
TIME at 0 range 18 .. 25;
MONDAY_HOUSE_KEEPING_BLOCK at 0 range 26 .. 345;
OTHER_HOUSE_KEEPING_BLOCK at 0 range 26 .. 345;
MEASUREMENT_BLOCK at 0 range 26 .. 345;

end record;
for STRUCTURE'size use 346; -- bits

Example 3-39: Complete Record Type Declaration with 2 Discriminants (2 of 2)

When the activity is House Keeping, the House Keeping Block varies with the Time values.
When the activity is Measurement, the Measurement Block does not depend on the Time.
When the activity is Incident, nothing else is present in the data.

The storage location of a component, relative to the start of the record, has been expressed
until now in bits (the expression after the keyword at has been set to 0). For large structures,
the values of expressions given after the reserved word range can be huge (see next example).

0 127 128 447 448 457 458 777
Date

(128 bits)
Block

(320 bits)
Interval
(10 bits)

Block_After_Interval
(320 bits)

type STRUCTURE is record
DATE : DATE_FORMAT;
BLOCK : MEASUREMENT_BLOCK_TYPE;
INTERVAL: TIME_COUNTER;
BLOCK_AFTER_INTERVAL: MEASUREMENT_BLOCK_TYPE;

end record;

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-32 May 1997

for STRUCTURE use
record

DATE at 0 range 0 .. 127;
BLOCK at 0 range 128 .. 447;
INTERVAL at 0 range 448 .. 457;
BLOCK_AFTER_INTERVAL at 0 range 458 .. 777;

end record;

for STRUCTURE 'size use 778; -- bits

Example 3-40: Big Record Type Declaration

So the EAST syntax also allows one to express the relative position of a component in a
distance, called word, to which a number of bits is added. EAST allows two units for the
distance: a 16-bit word or a 32-bit word.

The location of BLOCK_AFTER_INTERVAL of the last example is:

– the 459th bit; or

– the 11th bit in the word 28 (i.e., in the 29th word), if the chosen unit is a 16-bit word; or

– the 11th bit in the word 14 (i.e., in the 15th word), if the chosen unit is a 32-bit word.

The distance is specified using two predefined identifiers: WORD_16_BITS and
WORD_32_BITS(F8) that always represent 16 bits, respectively 32 bits, on any architecture.

Using this facility, the previous example becomes:

type STRUCTURE is record
DATE : DATE_FORMAT;
BLOCK : MEASUREMENT_BLOCK_TYPE;
INTERVAL: A_10_BIT_INTEGER;
BLOCK_AFTER_INTERVAL : MEASUREMENT_BLOCK_TYPE;

end record;

for STRUCTURE use
record

DATE at 0 * WORD_32_BITS range 0 .. 127;
BLOCK at 4 * WORD_32_BITS range 0 .. 319;
INTERVAL at 14 * WORD_32_BITS range 0 .. 10;
BLOCK_AFTER_INTERVAL at 14 * WORD_32_BITS range 11 .. 331;

end record;

for STRUCTURE 'size use 778; -- bits

Example 3-41: Big Record Type Declaration Using Word Facility

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-33 May 1997

Rules about the usage of record representation clauses

Rule 15 The clause “when others =>” is mandatory if all the discriminant values are not
explicitly named in the record type definition. See section 3.2.16. of reference [1].

Rule 16 Component locations must not overlap, except if the components belong to distinct
variants (i.e., belong to different alternative lists of components). See section
3.2.4.3. of reference [1].

Rule 17 The EAST Syntax requires the declaration of the fixed elements before the
optional ones in a structure. See section 3.2.4.3. of reference [1].

Rule 18 Record representation clauses allow one or more elements of the fixed part to be
placed after a variant part, if and only if the variant part has a constant length. See
section 3.2.4.3. of reference [1].

Rule 19 A record representation clause must be provided every time it is possible. For
variable components, representation clauses cannot be provided2. See section
3.2.4.3.of reference [1].

Rule 20 The order of record components is determined by the record representation clause.
If the record representation clause is incomplete, the order of the components that
have no representation clause is determined from the order within the record type
definition. See section 3.2.4.3. of reference [1].

3.2.12 VIRTUAL COMPONENTS

As seen in 3.2.6, record types represent structured data. Some of these structures are variable.
The variable part might be located deep in the structure, so that it is hidden from the root of
the structure. It may be informative to announce, at the root level, that a structure is variable
and what causes its variability. This is achieved by the use of discriminants (see 3.2.6).

But the duplication of discriminants at the highest level implies the presence, in the exchanged
data, of data occurrences corresponding to the duplicated discriminants (see 3.2.9). To satisfy
this need in spite of the implications, EAST proposes to prefix such discriminants with
“VIRTUAL_”. The following rule is then applicable:

Rule 21 Each component identifier which begins with “VIRTUAL_” does not represent
any data occurrence. See section 3.2.1.6. of reference [1].

2 The EAST Interpreter, used to access the data, has to compute the size of dynamic variables.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-34 May 1997

NOTE − In consequence, the use of the prefix “VIRTUAL_” is reserved for this specific
use.

The example, presented in section 2 and taken from the telemetry context, illustrates the use
of virtual components. It presents a packet, which may be considered as a data block,
containing a primary header, an optional secondary header, a source data block and some
other data. The primary header is composed of a packet identification block, a sequence
control block and the source data length. The packet identification may be precisely described
by the version number, the type identification, the secondary header flag and the application
process identification, etc.

Some components discriminate the presence or the size of other components: the secondary
header flag discriminates the presence of the secondary header, and the source data length
discriminates the size of the source data that are exchanged.

Figure 3-2 presents a packet structure.

Packet

Primary

Packet
Identification

Packet

Sequence

Control

Source

Data

Version
Number

Type_Id

Secondary
Header
Flag

Application
Process ID

Segmentation Source
Flag Sequence

Count

(3)

(1)

(1)

(11)

(2)
(14)

(16)

(variable) (variable)

(x) : Length in bits

Source

Data

Secondary

HeaderHeader

(48)

- Optional -

Length

[...]

discriminates

discriminates

Figure 3-2: Discriminants in Version 1 “Source Packet” Format

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-35 May 1997

This description can be formalized using EAST as follows:

-- basic data types used in the first branch
type VERSION is (VERSION_1, VERSION_2);
for VERSION use (VERSION_1 => 2#000#, VERSION_2 => 2#100#);
for VERSION'size use 3;

type PACKET_TYPE is (TELEMETRY , TELECOMMAND);
for PACKET_TYPE use (TELEMETRY => 0, TELECOMMAND => 1);
for PACKET_TYPE'size use 1;

type PRESENCE_FLAG is (ABSENT , PRESENT);
for PRESENCE_FLAG use (ABSENT => 0 , PRESENT => 1);
for PRESENCE_FLAG'size use 1;

type PROCESS_IDENTIFICATION is (WORKING , IDLE);
for PROCESS_IDENTIFICATION'size use 11;
for PROCESS_IDENTIFICATION use (WORKING => 2#00000000000#,

IDLE => 2#11111111111);

-- structuring type for the Packet Identification
type PACKET_IDENTIFICATION_TYPE is record

VERSION_NUMBER : VERSION;
TYPE_ID : PACKET_TYPE;
SECONDARY_HEADER_FLAG : PRESENCE_FLAG;
APPLICATION_PROCESS_ID : PROCESS_IDENTIFICATION;

end record;
for PACKET_IDENTIFICATION_TYPE use
record

VERSION_NUMBER at 0 range 0 .. 2;
TYPE_ID at 0 range 3 .. 3;
SECONDARY_HEADER_FLAG at 0 range 4 .. 4;
APPLICATION_PROCESS_ID at 0 range 5 .. 15;

end record;
for PACKET_IDENTIFICATION_TYPE'size use 16;

.../...

Example 3-42: EAST logical description of Version 1 “Source Packet” Format (1 of 3)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-36 May 1997

.../...
-- basic data types used in the second branch
type STATUS is (CONTINUATION_SEGMENT,

FIRST_SEGMENT,
LAST_SEGMENT,
UNSEGMENTED_PACKET);

for STATUS'size use 2;
for STATUS use (CONTINUATION_SEGMENT => 2#00#,

FIRST_SEGMENT => 2#01#,
LAST_SEGMENT => 2#10#,
UNSEGMENTED_PACKET => 2#11#);

type COUNTER is range 0 .. 16383;
for COUNTER'size use 14 bits;

-- structuring type for the Packet Sequence Control
type PACKET_SEQUENCE_CONTROL_TYPE is record

SEGMENTATION_FLAG : STATUS;
SOURCE_SEQUENCE_COUNT : COUNTER;

end record;
for PACKET_SEQUENCE_CONTROL_TYPE use
record

SEGMENTATION_FLAG at 0 range 0 .. 1;
SOURCE_SEQUENCE_COUNT at 0 range 2 .. 15;

end record;
for PACKET_SEQUENCE_CONTROL_TYPE 'size use 16;

-- basic data types used in the other branches
type NUMBER is range 0 .. 65535;
for NUMBER'size use 16;

type OCTET is range 0 .. 255;
for OCTET'size use 8;

-- structuring types
type DATA_ARRAY is array (NUMBER range <>) of OCTET;

subtype SECONDARY_HEADER_TYPE is DATA_ARRAY (1 .. 4);
.../...

Example 3-42: EAST logical description of Version 1 “Source Packet” Format (2 of 3)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-37 May 1997

.../...
type PRIMARY_HEADER_TYPE is record

PACKET_IDENTIFICATION : PACKET_IDENTIFICATION_TYPE;
PACKET_SEQUENCE_CONTROL : PACKET_SEQUENCE_CONTROL_TYPE;
SOURCE_DATA_LENGTH : NUMBER;

end record;
for PRIMARY_HEADER_TYPE use
record

PACKET_IDENTIFICATION at 0 range 0 .. 15;
PACKET_SEQUENCE_CONTROL at 0 range 16 .. 31;
SOURCE_DATA_LENGTH at 0 range 32 .. 47;

end record;
for PRIMARY_HEADER_TYPE'size use 48;

type PACKET_FORMAT_TYPE(
VIRTUAL_SECONDARY_HEADER_FLAG : PRESENCE_FLAG := PRESENT;
-- point to the second header flag located in the first branch
VIRTUAL_SOURCE_DATA_LENGTH : NUMBER := 256)
-- point to the source data length located in the third branch

is record
PRIMARY_HEADER : PRIMARY_HEADER_TYPE;
case VIRTUAL_SECONDARY_HEADER_FLAG is

when ABSENT =>
SOURCE_DATA_0 : DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);

when PRESENT =>
SECONDARY_HEADER : SECONDARY_HEADER_TYPE;
SOURCE_DATA_1 : DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);
end case;

end record;
for PACKET_FORMAT_TYPE use
record

PRIMARY_HEADER at 0 range 0 .. 47;
SECONDARY_HEADER at 0 range 48 .. 79;

end record;

PACKET : PACKET_FORMAT_TYPE;

Example 3-42: EAST logical description of Version 1 “Source Packet” Format (3 of 3)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-38 May 1997

The two virtual components “VIRTUAL_SECONDARY_HEADER_FLAG” and
“VIRTUAL_SOURCE_DATA_LENGTH” do not really exist in the exchanged data block.
They serve as a link between other data:

− VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the
SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block, and
conditions the existence of the SECONDARY_HEADER block. It serves as a link
between these two fields.

− VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the
SOURCE_DATA_LENGTH field in the PRIMARY HEADER and conditions the size
of the SOURCE DATA block. It serves as a link, too.

As an example, an occurrence of the variable PACKET could be:

− Virtual_Secondary_Header_Flag = PRESENT, i.e., the data item called

Secondary_Header_Flag (located in the 5
th
 bit of the data occurrence) has the value

PRESENT.
− Virtual_Source_Data_Length = 0, i.e., the data item called Source_Data_Length

(located from the 33rd bit through the 48
th
 bit) has the value 0.

− PRIMARY_HEADER : 48 bits
− SECONDARY_HEADER : 32 bits
− SOURCE_DATA : 0 bit
The size of this occurrence is, in this case, 80 bits (the virtual components being absent in
any data occurrence).
--or--
-
− Virtual_Secondary_Header_Flag = ABSENT, i.e., the data item called

Secondary_Header_Flag (located in the 5
th
 bit of the data occurrence) has the value

ABSENT.
− Virtual_Source_Data_Length = 10, i.e., the data item called Source_Data_Length

(located from the 33rd bit through the 48
th
 bit) has the value 10.

− PRIMARY_HEADER : 48 bits
− SECONDARY_HEADER : 0 bit
− SOURCE_DATA : 80 bits
The size of this occurrence is, in this case, 128 bits (the virtual components being absent in
any data occurrence).

Example 3-43: Occurrences of Version 1 “Source Packet” Format

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-39 May 1997

The convention of virtual variables is used to extend the descriptive capabilities of EAST. It
allows one to write more about the exchanged data, keeping the same structuring of the data.

NOTE − The two components “SOURCE_DATA_0” and “SOURCE_DATA_1” represent
the same data. But their location in the exchanged data block is different. That is
why they must have a different name.

Rule 22 EAST forbids identical names in a record. See section 3.2.1.6. of reference [1].

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-40 May 1997

3.2.13 FREQUENTLY ASKED QUESTIONS

Question 1 Are length clauses mandatory?

Answer 1 They are mandatory for basic data types (enumeration, integer and real types).
They are mandatory for aggregation types (array and record types) if the size of
the type is known at definition time.

Question 2 Are Enumeration Representation Clauses mandatory?

Answer 2 They are highly recommended for binary encoded enumeration types, but not
mandatory. If not provided, default bit patterns are assumed: the integer value
0 is associated with the first enumeration literal, 1 is associated with the second
one, and so on for every enumeration literal of the enumeration type.

They are forbidden for ASCII encoded enumeration types.

Question 3 Must an enumeration length clause exactly fit the bit patterns associated with
enumeration literals (provided or assumed)?

Answer 3 No. The size of an enumeration literal may be greater than needed. For
example, an enumeration type defined by three alternative values can be
mapped on a 2-bit type, but it could be defined with an 8-bit type. In this case,
the three corresponding binary integer values are stored in the 8-bit field as an
8-bit integer.

Question 4 Integer types and enumeration types can be used as discriminants in record
types, either to determine the size of arrays or to determine the presence of any
kind of component. Must these discriminants have a binary representation, or
can they have an ASCII representation?

Answer 4 Both representations, binary and ASCII, are allowed to discriminate types. In
particular, a string may be used as a discriminant, if the possible occurrences of
that string are well identified, i.e., define an enumeration type or an integer type
(see 3.2.5).

Question 5 Why are length clauses not provided for subtypes?

Answer 5 A subtype defines restrictions (in the range) of an existing basic type. The size
of the subtype is the same as the size of the type. It is therefore not necessary
(and not allowed by the EAST syntax) to specify a length clause for a subtype
because the type already has its length clause. Warning: one must define a new
type if the size of the type, defined by the restricted values, is not the same as
the size of the original type.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-41 May 1997

Question 6 Why are default values mandatory for discriminants?

Answer 6 Types allow the declaration of variables as seen in 3.2.9. In the case of variable
structures (i.e., records with discriminants), the corresponding variables do not
have to be static structures in assigning explicit values to the discriminants. The
following data declaration is not recommended because it sets forever the
structure of the data which is supposed to be variable:

HEADER : PACKET_HEADER(ABSENT);
-- This data has a constant structure

The suitable data declaration is:
HEADER : PACKET_HEADER; -- This data may have one of the two
structures

Question 7 Are Record Representation Clauses mandatory?

Answer 7 Yes, but they may be partially provided in some cases (e.g., if components are
of variable size or if components follow a variable size component).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-42 May 1997

3.3 PHYSICAL DESCRIPTIONS

3.3.1 OVERVIEW

The physical description must be self sufficient. The receiving machine, called destination,
does not have to know the emitting machine, called source. It does not have to refer to any
documentation about the source either. So the physical representation must provide all data-
storage related characteristics of the source, so that the destination is able to interpret the
received data. These characteristics are:

− the way of storing arrays on the medium, which, for multi-dimensional arrays, indicates
whether the first or last index varies first when considering the elements stored on the
medium (this characteristic is detailed in 3.3.2);

− the way of storing octets on the medium, which, for multi-octet elements, indicates
whether the most significant octet or the least significant octet is the first stored on the
medium (this characteristic is detailed in 3.3.3);

− the binary representation of logically defined basic types, which, for specific elements
(integer and real), provides a bit-level description as well as the standard used to
compute the numeric values from the bit-description (this characteristic is detailed in
3.3.4);

− the ASCII representation of logically defined basic types (integer, real and enumeration
types), which provides the number of characters used for their representation and, for
ASCII enumeration types, provides also the list of the ASCII permitted values (this
characteristic is detailed in 3.3.5).

The physical part is structured as follows:

Package name_of_physical_description_part is

Features applicable to the whole data collection

Relation between logical names and physical representations

End name_of_physical_description_part;

-- Way of storing octets and arrays

Representation of basic types

-- Binary and ASCII representations

-- Relation type definition

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-43 May 1997

Some of the frequently asked questions about the physical description part of EAST data
descriptions are summarized in 3.3.6.

The only basic types for which a physical description must be provided are those defined in the
logical description part. In some cases (see 3.4.2), the physical description part is empty.

The convention, adopted in this document, for the data representation on the medium is the
following one:

− In multi-octet elements, the first octet is drawn in the leftmost position and is called
“Octet Zero”. Successive octets are assigned successively larger numbers.

octet 0 octet 1 octet 2 octet 3

− Within an octet, the first bit (which is the Most Significant Bit or MSB) is drawn in the
leftmost position and is called “Bit Zero”. The Least Significant Bit (LSB) is in the
rightmost position.

0 7

octet

MSB LSB

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-44 May 1997

3.3.2 ARRAY STORAGE METHOD

The way of storing multidimensional arrays on the medium is one of the machine-dependent
characteristics. This descriptive element is easy to understand: host machines have different
ways of storing multi-dimensional arrays on the medium sometimes due to generating
languages. The identified ways of storing arrays are either first_index_first or last_index_first.
This attribute indicates how the sequence of the array elements is organized: in the first case,
the first index varies first; in the second case, the last index varies first.

In the following example, a two-dimensional matrix of integer elements is defined:

-- Data types declarations
type ELEMENT is range 0 .. 200 ;
for ELEMENT'size use 8 ; -- bits

type MATRIX is array(1 .. 10 , 1 .. 10) of ELEMENT ;
for MATRIX 'size use 800 ; -- bits

-- Data occurrence declaration
IMAGE : MATRIX;

Example 3-44: Two dimensional Matrix

How will a data interpreter use the array storage information to access the data?

To access the element IMAGE(1,5) an interpreter uses the following algorithm:

If A is the address of the first element of IMAGE on the medium (the first element being
IMAGE(1,1)):

− If the array storage method is last_index_first, then the element
IMAGE(1,5) is the fifth element of the array. The address of this element is
therefore (A + 4 * 8) because there are four elements before the fifth
element and the size of one element is 8 bits, as specified by the
representation clause of the ELEMENT type.

− If the array storage method is first_index_first, then the element
IMAGE(1,5) is the forty-first element of the array. The address of this
element is therefore (A + 41 * 8).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-45 May 1997

The array storage method is information obviously necessary for the destination to interpret
the received data. It is provided in the physical description using an enumeration type:

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST,
LAST_INDEX_FIRST) ;

Template 3-1 of the Physical Description

Using this declaration, the actual way of storing the array is provided:

ARRAY_STORAGE : constant ARRAY_STORAGE_METHOD :=
FIRST_INDEX_FIRST; -- for example

Example 3-45: Array storage

This declaration is applicable to the whole description.

By default (i.e. if this declaration is not available in the EAST description), the array storage is
FIRST_INDEX_FIRST.

3.3.3 OCTET STORAGE METHOD

Another characteristic of the source is the way of storing octets on the medium. This
characteristic is a tricky point of the physical description.

A machine is said to be big-endian or little-endian depending on whether the MSB is in the
lowest or highest addressed octet, i.e. in the first or last transmitted octet.

For a big-endian representation, the MSB is in the first transmitted octet, i.e. in the first octet
on the medium, while it is in the last transmitted octet, i.e. in the last octet on the medium for
a little-endian representation.

The little-endian representation for a data element can be viewed as storing the bits from least
to most significant bit order, but then re-ordering the bits (from most to least significant)
within each octet when output to some medium.

This machine-dependent characteristic is very important for a correct interpretation of the
data. Its definition is given for multi-octets data elements, but is still applicable for every data
element, whatever its length and its position (on octet boundary or not) within the data set.

The octet storage method has some impacts on basic types (enumeration, integer and real) as
well as on aggregation types too (records and arrays).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-46 May 1997

The following is an example of a simple record used to illustrate the differences introduced by
the source on the generated data:

Value (16 bits)
= 1345

Factor (8 bits)
= 8

The logical description of this data structure is the following one:

type FACTOR_TYPE is range -10 .. 10;
for FACTOR_TYPE'size use 8; -- bits

type VALUE_TYPE is range 0 .. 65535;
for VALUE_TYPE'size use 16; -- bits

type STRUCTURE is
record

VALUE : VALUE_TYPE;
FACTOR : FACTOR_TYPE;

end record;
for STRUCTURE use
record

VALUE at 0 range 0 .. 15;
FACTOR at 0 range 16 .. 23;

end record;
for STRUCTURE 'size use 24; -- bits

DATA_STRUCTURE : STRUCTURE;

Example 3-46: Record with Elements on Octet Boundaries

On a SUN (or on any other big-endian architecture), the data structure corresponds to the
following hexadecimal dump on the medium:

05 41 08

On a PC (or on any other little-endian architecture), the data structure corresponds to the
following hexadecimal dump on the medium:

41 05 08

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-47 May 1997

How will a data interpreter use the octet storage information to access the data?

The data that have been written by a SUN are interpreted using the following algorithm:

16#05 41 08# is read from the medium.
16#05 41 08# is also 2#0000 0101 0100 0001 0000 1000#
According to the record representation clauses of STRUCTURE: VALUE is located
from bit 0 through bit 15: 2#0000 0101 0100 0001#, i.e., has the value 1345,
FACTOR is located from bit 16 through bit 23: 2#0000 1000#, i.e., has the value 8.

The data that have been written by a PC are interpreted using the following algorithm:

16#41 05 08# is read from the medium.
41 is the least significant octet, while 05 is the most significant octet, because of the
behavior of the PC architecture when writing data on a medium. A data interpreter
has therefore to invert the octet first within each data item. The data structure
becomes: 16#05 41 08# which is also 2#0000 0101 0100 0001 0000 1000#
According to the record representation clauses of STRUCTURE: VALUE is located
from bit 0 through bit 15: 2#0000 0101 0100 0001#, i.e., has the value 1345,
FACTOR is located from bit 16 through bit 23: 2#0000 1000#, i.e., has the value 8.

The following is another example of a simple record used to illustrate the differences
introduced by the source on the generated data. In this case, the data items do not begin on an
octet boundary.

Version (2 bits)
= 1

Value (16 bits)
= 1345

Factor (6 bits)
= 8

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-48 May 1997

The logical description of this data structure is the following one:

type VERSION_TYPE is (ZERO, ONE, TWO);
for VERSION_TYPE use (ZERO => 0, ONE => 1, TWO => 2);
for VERSION_TYPE'size use 2; -- bits

type FACTOR_TYPE is range -10 .. 10;
for FACTOR_TYPE'size use 6; -- bits

type VALUE_TYPE is range 0 .. 65535;
for VALUE_TYPE'size use 16; -- bits

type STRUCTURE is
record

VERSION : VERSION_TYPE;
VALUE : VALUE_TYPE;
FACTOR : FACTOR_TYPE;

end record;
for STRUCTURE use
record

VERSION at 0 range 0 .. 1;
VALUE at 0 range 2 .. 17;
FACTOR at 0 range 18 .. 23;

end record;
for STRUCTURE 'size use 24; -- bits

DATA_STRUCTURE : STRUCTURE;

Example 3-47: Record with Elements not on Octet Boundaries

On a SUN (or on any other big-endian architecture), the data structure corresponds to the
following hexadecimal dump on the medium:

41 50 48

On a PC (or on any other little-endian architecture), the data structure corresponds to the
following hexadecimal dump on the medium:

05 15 20

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-49 May 1997

How will a data interpreter use the octet storage information to access the data?

The data that have been written by a SUN are interpreted using the following algorithm:

16#41 50 48# is read from the medium.
16#41 50 48# is also 2#0100 0001 0101 0000 0100 1000#
According to the record representation clauses of STRUCTURE: VERSION is
located from bit 0 through bit 1: 2#01#, i.e., has the value 1 (= ONE), VALUE is
located from bit 2 through bit 17: 2#0000 0101 0100 0001#, i.e., has the value 1345,
FACTOR is located from bit 18 through bit 23: 2#001000#, i.e., has the value 8.

The data that have been written by a PC are interpreted using the following algorithm:

16#05 15 20# is read from the medium.
In this case, the data items are not on octet boundaries. A simple octet inversion is
not applicable. The solution is to invert each bit within each octet of the data
structure, and then invert each bit within each data item.
16#05 15 20# is also 2#00000101 00010101 00100000#2
After the first bit inversion, the data structure becomes:
2#10100000 10101000 00000100#
After the other bit inversions, the data structure becomes:
2#01 0000010101000001 001000#
According to the record representation clauses of STRUCTURE: VERSION is
located from bit 0 through bit 1: 2#01#, i.e., has the value 1 (= ONE), VALUE is
located from bit 2 through bit 17: 2#0000 0101 0100 0001#, i.e., has the value 1345,
FACTOR is located from bit 18 through bit 23: 2#001000#, i.e., has the value 8.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-50 May 1997

The octet storage method is a way to indicate how to interpret the data. It is provided in the
physical description using an enumeration type:

type BIT_ORDER is (HIGH_ORDER_FIRST, -- big-endian representation
LOW_ORDER_FIRST) ; -- little-endian representation

Template 3-2 of the Physical Description

Using this declaration, the actual way of storing octet is provided:

OCTET_STORAGE : constant BIT_ORDER := HIGH_ORDER_FIRST; -- for example

Example 3-48: Octet storage

This declaration is applicable to the whole description.

By default (i.e. if this declaration is not available in the EAST description), the octet storage is
HIGH_ORDER_FIRST.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-51 May 1997

3.3.4 BINARY REPRESENTATION OF SCALAR TYPES

There is no predefined scalar type(F9) (except CHARACTER type) provided by EAST for user
data descriptions, so each scalar type must be explicitly defined by the user in the data
description.

a) Enumeration types

Enumeration types are defined by their possible values and their size in bits. A binary
enumeration value is an integer value that is expected to be represented as a bit string
that respects a standard format, defined as follows:

MSB LSB

No binary representation is provided for a binary enumeration type. Negative values are
represented in a two’s complement form.

b) Integer types

Integer types are defined by their range and their size in bits. There are two kinds of
integer types:

− the integer types, which are independent of the machine integer types (e.g., a
13-bit integer type);

− the integer types that can map with the integer types of the host machine,
called “machine integer types” (e.g., a 16-bit signed integer type).

In the first case, the integer types are not expected to be mapped on existing machine
integer types. No binary representation is provided. The bit pattern of such integer types
is supposed to respect a standard format, defined as follows:

MSB LSB

Warning:

− If the range of the integer type allows negative values, then a sign bit is
present and is then the leftmost bit. The sign convention is then by default
the two’s complementation.

− If the range of the integer type does not allow negative values, then there is
no sign bit.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-52 May 1997

In the second case, the size is a multiple of octets, and a binary representation must
therefore be specified. The binary representation of an integer type specifies the sign
convention which indicates the complementation, if any, and the location of the bits
from the MSB to the LSB, the sign location, if any, being the MSB.

Let’s take the example of a 16-bit integer generated by a PC (i.e., for which a binary
representation is mandatory), which has the following bit pattern on a medium:

0 7 8 15

octet 0 octet 1

27 20 215 28

The most significant bit (if the integer is unsigned) or the sign bit (if it is signed) is the
9th bit encountered (bit 8). Then, a less significant bit is the 10th bit encountered (bit 9)
and so on till the 16th bit. And then from bit 0 through bit 7, the bit 7 being the least
significant bit of the integer. The bit ordering (from MSB to LSB) can also be expressed
in a simple manner using ranges: (8 , 15) and (0 , 7).

How will a data interpreter use the binary representation of this integer to retrieve
the value?

To compute an element coded with this 16-bit integer type, an interpreter uses the
following algorithm:

− If the integer is identified as a signed integer, then the sign bit is bit 8 and the
MSB is bit 9. If it is identified as an unsigned integer, the MSB is bit 8.

− If the integer is identified as a signed integer and if the sign bit has the value
1, the interpreter must complement the bit string.

− The value is computed in multiplying each bit with its weight (the weight
decreases from 215 (or 214 if a sign bit is present) for the MSB, to 20 for the
LSB) and adding the result.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-53 May 1997

The description of an integer binary representation using the EAST syntax is the
following one:

type INTEGER_PHYSICAL_DESCRIPTION
(NUMBER_OF_SUBFIELDS : SUBFIELD_NUMBER := 1)

is record
COMPLEMENT : SIGN_CONVENTION;
LOCATION : LOCATION_OF_FIELD(1 .. NUMBER_OF_SUBFIELDS);

end record;

Template 3-3 of the Physical Description

SIGN_CONVENTION is defined as follows:

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,
ONES_COMPLEMENT, TWOS_COMPLEMENT);

Template 3-4 of the Physical Description

− UNSIGNED is used for unsigned integer types.

− SIGN_AND_MAGNITUDE is used when the integer is interpreted as a sign
bit location followed by a positive quantity. A MSB ‘1’ means a negative
integer and a MSB ‘0’ means a positive integer.

− ONES_COMPLEMENT is used when , the MSB being ‘1’, the absolute
value of the negative integer is computed in inverting each bit (‘1’ becomes
‘0’ and ‘0’ becomes ‘1’).

− TWOS_COMPLEMENT is used when , the MSB being ‘1’, the absolute
value of the negative integer is computed in inverting each bit (‘1’ becomes
‘0’ and ‘0’ becomes ‘1’) and adding ‘1’ to the LSB.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-54 May 1997

LOCATION_OF_FIELD is defined as an array of intervals declaring the location of
subfields (these subfields are used to define the exact location of the integer bits).

type NATURAL_NUMBER is range 0 .. 65535;

type LOCATION_OF_SUBFIELD is record
BEGINNING_AT_BIT_NUMBER : NATURAL_NUMBER;
ENDING_AT_BIT_NUMBER : NATURAL_NUMBER;

end record;

MAXIMUM_NUMBER_OF_SUBFIELDS : constant := 255;

type SUBFIELD_NUMBER is range
1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)
of LOCATION_OF_SUBFIELD;

Template 3-5 of the Physical Description

BEGINNING_AT_BIT_NUMBER of the first element of the array
LOCATION_OF_FIELD is supposed to be the bit number of the MSB or the sign bit
number, if any. Bit numbers continue in sequence until ENDING_AT_BIT_NUMBER
of the last element of LOCATION_OF_FIELD, which is supposed to be the bit number
of the LSB.

NOTES

1 The MAXIMUM_NUMBER_OF_SUBFIELDS is set to 255. The number of
subfields that are necessary to locate the bits of an integer can be up to 255. It is
an arbitrary value that is big enough to cover all the identified architectures.

2 The upper bound of NATURAL_NUMBER is set to 65535. It is an arbitrary
value that seems to be large enough in this context.

Each time the bits of an integer are not contiguously located on the medium from the
MSB to the LSB (see the previous example), several subfields are necessary to locate
the bits of the integer.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-55 May 1997

The binary representation of a 16 bit signed integer on PC is:

Binary_Representation : constant INTEGER_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS => 2,
COMPLEMENT => TWOS_COMPLEMENT,
LOCATION => (1 => (8,15) , -- first subfield (bit 8 through 15)

2 => (0,7))); -- second subfield (bit 0 through 7)

Example 3-49: Binary Integer Type Physical Description (1)

In this example, elements 1 and 2 of the LOCATION component are assigned to values
(8,15) and (0,7). The whole binary representation indicates therefore that the sign bit is
the 9th bit encountered (bit 8). Then, the most significant bit is the 10th bit encountered
(bit 9), then, a less significant bit is the 11th bit encountered (bit 10), and so on till the
16th bit, and then from bit 0 through bit 7, bit 7 being the least significant bit of the
integer.

The binary representation of a 16 bit unsigned integer on PC is:

Binary_Representation : constant INTEGER_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS => 2,
COMPLEMENT => UNSIGNED,
LOCATION => (1 => (8,15) , -- first subfield (bit 8 through 15)

2 => (0,7))); -- second subfield (bit 0 through 7)

Example 3-50: Binary Integer Type Physical Description (2)

In this example, elements 1 and 2 of the LOCATION component are assigned to values
(8,15) and (0,7). The whole binary representation indicates therefore that the most
significant bit is the 9th bit encountered (bit 8). Then, a less significant bit is the 10th bit
encountered (bit 9), and so on till the 16th bit, and then from bit 0 through bit 7, bit 7
being the least significant bit of the integer.

NOTES

 1 The ranges can be ordered backwards as well, (15,8) and (7,0), if this is the way
that the bits are numbered by the machine architecture, i.e., if the first
transmitted bit of an octet is the LSB, and not the MSB (as it is supposed to
be).

2 The name of the constant used to identify the binary representation
(Binary_Representation) could be any identifier (except a reserved keyword).
The only restriction is that a constant identifier cannot be defined twice in a
package.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-56 May 1997

c) Real types

All real types, when binary encoded, must have a binary representation. The binary
representation of a real type on the medium specifies the sign bit number, the sign
convention, the exponent base, the bias used, the location of the exponent and the
location of the mantissa.

A convention or standard gives the way to use the bit pattern to compute the associated
numeric value. The binary representation of a real type also specifies therefore the
convention used for its generation.

NOTE − The convention only concerns real representation on the medium, so
different format representations can be expressed in the same Data
Description Record even though they could not have existed on the same
machine at the same time. A block of data processed on a given machine
could have been inserted in another block of data processed in another
machine.

Let’s take the example of a 32-bit real generated by a PC (IEEE convention - see
reference [8]) which has the following bit pattern on a medium:

0 7 8 15 16 23 24 31

octet 0 octet 1 octet 2 octet 3

< Mantissa > < Mantissa > ↓ < Mantissa > ↓ <Exponent >
Exponent Sign

The most significant bit of the exponent is the 26th bit encountered (bit 25). Then from
bit 26 through bit 31 the bits encountered are less significant, and bit 16 is the least
significant bit of the exponent.

In the same way, the most significant bit of the mantissa is the 18th bit encountered (bit
17). Then from bit 18 through bit 23, and from bit 8 through bit 15, and from bit 0
through bit 7, the bits encountered are less significant, bit 7 being the least significant bit
of the mantissa.

The bit ordering of the exponent (from MSB to LSB) can also be expressed in a simple
manner using ranges: (25 , 31) and (16 , 16). In the same way, the bit ordering of the
mantissa (from MSB to LSB) can be expressed using ranges: (17,23), (8,15), (0,7).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-57 May 1997

How will a data interpreter use the binary representation of this real to retrieve
the value?

To compute an element coded with the 32 bit real type, an interpreter uses the following
algorithm:

− The exponent is computed by multiplying each bit by its weight (the weight
decreases from 27 for the MSB, to 20 for the LSB) and adding the result.

− The mantissa is computed by dividing each bit by an increasing weight (the
weight increases from 21 for the MSB of the mantissa to 223 for the LSB)
and adding the result.

− The value is computed according to the formula: (-1)S * 1.M * 2(E - 127),
where S is the value of the sign bit, M is the calculated mantissa and E is the
calculated exponent.

The following is a description of a real binary representation using the EAST syntax:

type REAL_PHYSICAL_DESCRIPTION(
NUMBER_OF_SUBFIELDS_IN_EXPONENT : SUBFIELD_NUMBER := 1;
NUMBER_OF_SUBFIELDS_IN_MANTISSA : SUBFIELD_NUMBER := 1)

is record
CONVENTION_USED : LIST_OF_RECOGNIZED_CONVENTIONS;
SIGN_BIT_NUMBER : NATURAL_NUMBER ;
COMPLEMENT : SIGN_CONVENTION;
EXPONENT_BASE : NATURAL_NUMBER ;
BIAS : NATURAL_NUMBER ;
LOCATION_OF_EXPONENT : LOCATION_OF_FIELD

(1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);
LOCATION_OF_MANTISSA : LOCATION_OF_FIELD

(1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);
end record;

Template 3-6 of the Physical Description

LIST_OF_RECOGNIZED_CONVENTIONS is defined as a list of ADIDs representing
the permitted conventions. Reference [9] provides the names of the recognized
conventions and associated ADIDs, and for each of them, the algorithm to be used, to
compute the original value, according to the information stored in the real binary
representation. As an example, this type could be defined as follows:

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001);

Example 3-51: List of Conventions

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-58 May 1997

NOTE − This type shall contain at least the ADIDs, used in the current Data
Description. It is not mandatory to find in this definition the exhaustive list of
the registered conventions, i.e., the exhaustive list of relevant ADIDs.

SIGN_CONVENTION is the enumeration type previously defined for the
INTEGER_PHYSICAL_DESCRIPTION, and applied to the mantissa. The BIAS is to
be subtracted from the exponent, and the EXPONENT_BASE is raised to the power of
the biased exponent.

Each time the bits of the exponent or of the mantissa are not contiguously located on the
medium from the MSB to the LSB (see the previous example), several subfields are
necessary to locate these bits.

The associated representation of the previous real example is:

Binary_Representation : constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 2,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => 3,
CONVENTION_USED => FCSTC000, -- IEEE754
SIGN_BIT_NUMBER => 24,
COMPLEMENT => SIGN_AND_MAGNITUDE,
EXPONENT_BASE => 2,
BIAS => 127,
LOCATION_OF_EXPONENT => (1 => (25,31) , -- 1st subfield

2 => (16,16)), -- 2nd subfield
LOCATION_OF_MANTISSA => (1 => (17,23) , -- 1st subfield

2 => (8,15) , -- 2nd subfield
3 => (0,7))); -- 3rd subfield

Example 3-52: Binary Real Type Physical Description

In this example, the LOCATION_OF_EXPONENT component, elements 1 and 2 are
assigned to values (25,31) and (16,16). This expresses the range of the bit numbering in
the exponent subfield. In the same way, the LOCATION_OF_MANTISSA component,
elements 1, 2 and 3 are assigned to values (17,23), (8,15) and (0,7). This expresses the
range of the bit numbering in the mantissa subfield.

NOTE − The name of the constant used to identify the binary representation
(Binary_Representation) could be any identifier (except a reserved keyword).
The only restriction is that a constant identifier cannot be defined twice in a
package.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-59 May 1997

3.3.5 ASCII REPRESENTATION OF SCALAR TYPES

In order to increase the portability of data, some users may wish to store types as ASCII
encoded types and not as binary types (enumeration types, integer types or real types). An
ASCII Encoded type is a character string type with a specific format, that depends on the
nature of the type (enumeration, integer or real).

There is no distinction made in the logical part of an EAST description between binary and
ASCII encoded types. The actual representation of the types is provided in the physical part of
the description. By default, a type is a binary encoded type. An ASCII representation must be
associated with the type name, if the type is ASCII encoded.

a) ASCII Encoded Enumeration

An ASCII Encoded Enumeration is a character string representing an enumeration
value. The ASCII representation of an enumeration type provides all the character
strings associated with all the enumeration literals of the type.

The ASCII representation of an enumeration uses the following types:

type STRING_LIST is array(NATURAL_NUMBER range <>,
NATURAL_NUMBER range <>) of

CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (
NUMBER_OF_OCCURRENCES : NATURAL_NUMBER := 0;
NUMBER_OF_CHARACTERS : NATURAL_NUMBER := 0) is record
REPRESENTATION : STRING_LIST (1 .. NUMBER_OF_OCCURRENCES,

1 .. NUMBER_OF_CHARACTERS);
end record;

Template 3-7 of the Physical Description

For example, an enumeration type which has two permitted values, “TM” and “TC”,
indicating a Telemetry Packet or a Telecommand Packet, can be described in the logical
part as follows:

type PACKET_TYPE is (TELEMETRY, TELECOMMAND);
for PACKET_TYPE'size use 16; -- bits

Example 3-53: ASCII Enumeration Type Logical Declaration

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-60 May 1997

and in the physical part as follows:

ASCII_Rep : constant ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 2,
REPRESENTATION => (“TM” , “TC”));

Example 3-54: ASCII Enumeration Type Physical Description

Rule 23 The number of characters used to encode the enumeration type must be the same
for every enumeration literal of the type. See section 3.3.3.2. of reference [1].

Rule 24 All characters (i.e., the 256 characters of the “Latin Alphabet No. 1”—see
reference [6]) are allowed and significant, including the space character. See
section 3.3.3.2. of reference [1].

Rule 25 The physical representations of the enumeration literals are provided in the order
of their declaration in the logical part. See section 3.3.3.2. of reference [1].

NOTE − The name of the constant used to identify the ASCII representation (ASCII_Rep)
could be any identifier (except a reserved keyword). The only restriction is that a
constant identifier cannot be defined twice in a package.

The relation between the logical definition of the enumeration type “PACKET_TYPE” and its
physical description “ASCII_Rep” is made in creating a connection between the two names
(see 3.4.2).

b) ASCII Encoded Decimal Integer

An ASCII Encoded Decimal Integer is a character string representing an integer value.
The format of the character string corresponding to an ASCII encoded decimal integer
is described in Figure 3-3:

digit

space '+'

'-'

space

Figure 3-3: ASCII Encoded Decimal Integer Format

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-61 May 1997

The ASCII representation of an integer type specifies the number of characters used for
the integer values. The ASCII representation of an integer uses the following type:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record
NUMBER_OF_CHARACTERS : NATURAL_NUMBER ;

end record;

Template 3-8 of the Physical Description

For example, a 5-character ASCII decimal integer type can be described in the logical
part as follows:

type COUNTER is range -1 .. 16383;
for COUNTER'size use 40; -- bits, i.e., 5 characters

Example 3-55: ASCII Integer Type Logical Declaration

and in the physical part as follows:

ASCII_Rep : constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => 5);

Example 3-56: ASCII Integer Type Physical Description

Possible occurrences of this integer type are:

– “ -1 ”
– “ 205 ”
– “ 8451 ”
– “11001 ”

NOTE − The name of the constant used to identify the ASCII representation
(ASCII_Rep) could be any identifier (except a reserved keyword). The only
restriction is that a constant identifier cannot be defined twice in a package.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-62 May 1997

c) ASCII Encoded Decimal Real

An ASCII Encoded Decimal Real is a string representing a real value. The format of the
character string corresponding to an ASCII encoded decimal real is described in Figure
3-4:

digitspace '+'

'-'

'.' ...

...

space

digit

'E'

'e'

'D'

'+'

'-'

digit

'd'

Figure 3-4: ASCII Encoded Decimal Real Format

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

NOTES

1 Only the normalized ASCII encoded numbers can be described using EAST.
There is no convention for the ASCII representation of infinite values (“+INF”,
“-INF” or “+ ∞”, “- ∞”) and no representation for “NaN” (Not a Number).

2 In the FORTRAN 90 Numeric Editing section (see reference [10]), it is
specified that the decimal point is optional in the F notation. In the same way,
the ‘E’ or ‘D’ may be omitted in the E and D notation. These features have not
been retained because the ASCII real value must be “readable”, i.e.,
understandable without any other information but the number of characters.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-63 May 1997

The ASCII representation of a real type specifies the number of characters used for the
real values. The ASCII representation of a real uses the same type as the one used for
the representation of integer:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record
NUMBER_OF_CHARACTERS : NATURAL_NUMBER ;

end record;

Template 3-9 of the Physical Description

For example, an 11-character ASCII decimal real type can be described in the logical
part as follows:

type KILOMETERS is digits 5;
for KILOMETERS'size use 88; -- bits

Example 3-57: ASCII Real Type Logical Declaration

and in the physical part as follows:

ASCII_Rep : constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => 11);

Example 3-58: ASCII Real Type Physical Description

Possible occurrences of this real type are:

– “ 1.2674E+03 ”
– “ -128.56 ”
– “ -1.3689E-8 ”

NOTE − The name of the constant used to identify the ASCII representation
(ASCII_Rep) could be any identifier (except a reserved keyword). The only
restriction is that a constant identifier cannot be defined twice in a package.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-64 May 1997

3.3.6 FREQUENTLY ASKED QUESTIONS

Question 1 Is the octet storage method significant for the bit storage?

Answer 1 The octet storage method, defined by the bit ordering, is useful for the
interpretation of multi-octet elements as well as for the interpretation of “small”
elements, i.e., elements with a length less than 8 bits.

Question 2 Why is no binary representation provided for a binary enumeration type?

Answer 2 An enumeration value is an integer value. The bit ordering is sufficient to
deduce the binary representation of the enumeration because it specifies
indirectly the location of the most significant bit and the location of the least
significant bit: if the octet storage method is “high order first”, then the first
encountered bit is the most significant bit of the enumeration; if it is the “low
order first”, then the octets must be first inverted, to have the most significant
bit of the enumeration in the first encountered bit. The sign convention, if
needed, is the two’s complementation.

Question 3 How is a real that is generated using a non-recognized convention described?

Answer 3 The list of recognized conventions is not an exhaustive list (see reference [9]).
This list shall be extended, if necessary. In the case of a “new” real convention,
the binary representation must be provided to the relevant Member Agency
Control Authority Office (MACAO) for registration and definition of a new
ADID; the “CONVENTION_USED” field must be filled with the “new”
convention ADID. The document [9] should be upgraded within a relatively
short delay.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-65 May 1997

3.4 ORGANIZATION OF EAST DATA DESCRIPTION RECORDS

As seen in the previous subsections (3.2 and 3.3), EAST contributes to a complete data
description. EAST organizes the description in two units, called packages, the first one being
the logical data description package and the second one the physical data description package.

Subsection 3.4.1 summarizes the list of information items provided in the logical part and
gives an example of an EAST logical package.

Subsection 3.4.2 summarizes the list of information items provided in the physical part and
gives an example of an EAST physical package (associated with the logical one presented in
3.4.1).

3.4.1 LOGICAL DATA DESCRIPTION PACKAGE

The first package contains the logical description of all data types used to declare an
occurrence of the exchanged data. This logical description is written using the EAST syntax,
as described in 3.2 and specified in reference [1].

The logical description must include the following EAST statements:

− A mandatory statement beginning with the keyword “package” followed by an EAST
identifier, which is supposed to be the name of the logical data description part, and
followed by the keyword “is”. This statement is the first one of the logical package.

− Declaration of constants used in the rest of the description.

− User type declarations and their associated representation clauses, which describe the
syntax of data items and the relationship of these data items. Atomic data types
(enumeration types, integer types, real types and character string subtypes) must be
declared before any aggregation data types (array types and record types) that make use
of them.

− Declaration of variables (and constants), which represent one actual data occurrence.
The order of the declarations must correspond to the order of the contiguous data items
in any block instance described by this logical description. The exchanged data block
contains n (n ≥ 1) contiguous occurrences of the described data.

− A mandatory statement beginning with the keyword “end” followed by the name of the
logical data description part (the same one as the one after the keyword “package” at
the beginning of the description), and followed by the character “;”. This statement is
the last one of the logical package.

The order of the declarations of the logical package is not free. An EAST definition must
appear before it is used(F10).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-66 May 1997

CAUTION − A type declaration does not correspond to any data occurrence. Only the
declared variables correspond to the data that are to be exchanged.

Some readers may find it laborious to declare types and then variables. Why is it not sufficient
to provide only type declarations for a data description?

The following example illustrates the different meaning intrinsic to a type declaration and to a
declaration of a variable.

package logical_CNES_description_01 is

-- type declarations
type BULLETIN_KIND is (CARTESIAN , KEPLERIAN);
for BULLETIN_KIND'size use 72; -- bits

type YEAR is range 1900 .. 2100;
for YEAR'size use 32; -- bits

type MONTH is range 1 .. 12;
for MONTH'size use 32; -- bits

type DAY_OF_MONTH is range 1 .. 31;
for DAY_OF_MONTH'size use 32; -- bits

type HOUR is range 0 .. 23;
for HOUR'size use 32; -- bits

type MINUTE is range 0 .. 59;
for MINUTE'size use 32;-- bits

.../...

Example 3-59: Complete Logical Description (1 of 4)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-67 May 1997

type SECOND is digits 5 range 0.0000 .. 59.999;
for SECOND'size use 32; -- bits

type KILOMETERS is digits 12 range 0.00000000000 .. 999999.999999;
for KILOMETERS'size use 64; -- bits

type KM_SEC is digits 12 range 0.00000000000 .. 999999.999999;
for KM_SEC'size use 64; -- bits

type RATIO is digits 12 range 0.00000000000 .. 1.00000000000;
for RATIO'size use 64; -- bits

type ANGULAR_DEGREE is digits 12 range 0.0 .. 360.0;
for ANGULAR_DEGREE'size use 64; -- bits

type EPOCH_TIME is record
Experiment_Year : YEAR;
Experiment_Month : MONTH;
Experiment_Day : DAY_OF_MONTH;
Experiment_Hour : HOUR;
Experiment_Minute : MINUTE;
Experiment_Second : SECOND;

end record;
for EPOCH_TIME use
record

Experiment_Year at 0 * WORD_32_BITS range 0 .. 31;
Experiment_Month at 1 * WORD_32_BITS range 0 .. 31;
Experiment_Day at 2 * WORD_32_BITS range 0 .. 31;
Experiment_Hour at 3 * WORD_32_BITS range 0 .. 31;
Experiment_Minute at 4 * WORD_32_BITS range 0 .. 31;
Experiment_Second at 5 * WORD_32_BITS range 0 .. 31;

end record;
for EPOCH_TIME'size use 192; -- bits

.../...

Example 3-59: Complete Logical Description (2 of 4)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-68 May 1997

type BULLETIN (Kind : BULLETIN_KIND := CARTESIAN) is record
case Kind is

when CARTESIAN =>
State_Position_Element_X_Axis : KILOMETERS;
State_Position_Element_Y_Axis : KILOMETERS;
State_Position_Element_Z_Axis : KILOMETERS;
State_Velocity_Element_X_Axis : KM_SEC;
State_Velocity_Element_Y_Axis : KM_SEC;
State_Velocity_Element_Z_Axis : KM_SEC;

when KEPLERIAN =>
Semi_Major_Axis : KILOMETERS;
Eccentricity : RATIO;
Inclination : ANGULAR_DEGREE;
Right_Ascencion_Ascending_Node : ANGULAR_DEGREE;
Argument_of_Perigee : ANGULAR_DEGREE;
True_Anomalie : ANGULAR_DEGREE;

end case;
end record;
for BULLETIN use
record

Kind at 0 * WORD_32_BITS range 0 .. 71;
State_Position_Element_X_Axis at 2 * WORD_32_BITS range 8 .. 713;
State_Position_Element_Y_Axis at 4 * WORD_32_BITS range 8 .. 71;
State_Position_Element_Z_Axis at 6 * WORD_32_BITS range 8 .. 71;
State_Velocity_Element_X_Axis at 8 * WORD_32_BITS range 8 .. 71;
State_Velocity_Element_Y_Axis at 10 * WORD_32_BITS range 8 .. 71;
State_Velocity_Element_Z_Axis at 12 * WORD_32_BITS range 8 .. 71;
Semi_Major_Axis at 2 * WORD_32_BITS range 8 .. 71;
Eccentricity at 4 * WORD_32_BITS range 8 .. 71;
Inclination at 6 * WORD_32_BITS range 8 .. 71;
Right_Ascencion_Ascending_Node at 8 * WORD_32_BITS range 8 .. 71;
Argument_of_Perigee at 10 * WORD_32_BITS range 8 .. 71;
True_Anomaly at 12 * WORD_32_BITS range 8 .. 71;

end record;
for BULLETIN'size use 392; -- bits

.../...

Example 3-59: Complete Logical Description (3 of 4)

3 All the components after “kind” are not located on a (32 bits) word boundary. That is why a
component is located from the 8th bit of the word to the 71th, which is also the 7th of two words later.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-69 May 1997

-- declaration of variables
TIME : EPOCH_TIME;
BULLETIN_AT_THAT_TIME : BULLETIN;
INTERVAL : SECOND;
BULLETIN_AFTER_INTERVAL : BULLETIN;

end logical_CNES_description_01;

Example 3-59: Complete Logical Description (4 of 4)

In this example, it may be noted that:

− many types are declared, only three of those are used to declare the variables
corresponding to the actual exchanged data;

− one of these types is an atomic data type (SECOND) used:

• for the definition of a complex data type (EPOCHTIME);

• for the declaration of a data item (Interval);

− the exchanged data set contains two data of the same type (BULLETIN).

So there is no one-to-one relationship between type declarations and data occurrences. Only
variables can describe what kind of data is actually exchanged or stored. In this case, the
described data set is a concatenation of an Epochtime, a Bulletin, an Interval and another
Bulletin.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-70 May 1997

3.4.2 PHYSICAL DATA DESCRIPTION PACKAGE

The second package contains the physical description as specified in 3.3 It includes the
following EAST statements in the following order:

− a mandatory statement beginning with the keyword “package” followed by an EAST
identifier, which is supposed to be the name of the physical data description part, and by
the keyword “is”;

− two optional statements giving the array storage method, as specified in 3.3.2;

− two optional statements giving the octet storage method, as specified in 3.3.3;

− optional statements giving the actual representations of scalar types, that is type
declarations as specified in 3.3.4 and 3.3.5, and constant declarations providing the
actual representations;

− a set of optional statements giving the association of basic (i.e. scalar) type names and
their actual representations (this point is further developed);

− a mandatory statement beginning with the keyword “end” followed by the name of the
physical data description part, and followed by the character “;”.

Representations of scalar types are provided in the physical description part. However, the
relationship between these representations and the type names which are given in the logical
description part still have to be specified. This is achieved with the following declarations.

An enumeration type declaration must be present to give all the basic type names defined in
the logical description part, i.e., all integer type names, all real type names and some
enumeration type names (the ASCII one). Every name is prefixed by “USER_TYPE_” in the
following list:

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy ,
USER_TYPE_zzz);

Template 3-10 of the Physical Description

where xxx, yyy, zzz are the names of the basic types.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-71 May 1997

The different representations used are declared using the following constant declarations:

Binary_Representation_01 : constant INTEGER_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS => n,
COMPLEMENT =>m ,
LOCATION => (1 => (r,s) ,

...
n => (t,u)));

Binary_Representation_02 : constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => n1,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => n2,
CONVENTION_USED => FCSTC000, -- IEEE754
SIGN_BIT_NUMBER => z,
COMPLEMENT => m,
EXPONENT_BASE => d,
BIAS => i,
LOCATION_OF_EXPONENT => (1 => (r,s) ,

...
n1 => (t,u)),

LOCATION_OF_MANTISSA => (1 => (v,w) ,
...
n2 => (x,y)));

ASCII_Representation_01 : constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => d);

ASCII_Representation_02 : constant
ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_CHARACTERS => j,
NUMBER_OF_OCCURRENCES => k,
REPRESENTATION => (“...”, ...));

Example 3-60: Template for ASCII and Binary Physical Descriptions

where n, n1, n2 are the numbers of subfields; r, s, t, u, v, w, x, y, z are bit numbers; m
indicates the sign convention; d, i, j and k are positive numbers.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-72 May 1997

Finally the relation between the scalar type names and their representations is specified as
follows:

type RELATION(choice : BASIC_TYPE_NAMES) is record
case choice is

when USER_TYPE_xxx =>
PHYS_xxx : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_yyy =>

PHYS_yyy : REAL_PHYSICAL_DESCRIPTION :=
Binary_Representation_02;

when USER_TYPE_zzz =>
PHYS_zzz : ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=

ASCII_Representation_01;
end case;

end record;

Example 3-61: Template for Relation Type Definition

The integer physical representation Binary_Representation_01 is associated with the logical
type named “xxx”, which has been previously defined in the associated logical package as seen
in 3.2. In the same way, the real physical representation Binary_Representation_02 is
associated with the logical type named “yyy”, and the ASCII physical representation
ASCII_Representation_01 is associated with the logical type named “zzz”.

NOTES

1 The syntax of the type RELATION is not free. In particular the number of
components and their names (PHYS_...) are imposed by the number of enumeration
literals of the type BASIC_TYPE_NAMES and the names of these literals.

2 The names of the physical representation are free. The names
Binary_Representation_xx and ASCII_Representation_xx are just examples. The only
applicable rule is that all the physical representation names must be different.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-73 May 1997

Rules about the content of the physical data description package:

Rule 26 The array storage is optional (ARRAY_STORAGE_METHOD type and
ARRAY_STORAGE constant) if there is no multi-dimensional array in the logical
part, or if the method is FIRST_INDEX_FIRST (default value).

Rule 27 The octet storage is optional (BIT_ORDER type and OCTET_STORAGE
constant) if the method is HIGH_ORDER_FIRST (default value).

Rule 28 The type REAL_PHYSICAL_DESCRIPTION is optional if there is no binary
representation for real type to provide, i.e. if there is no binary real type in the
logical part.

Rule 29 The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is no binary
representation for integer type to provide, i.e. if there is no binary integer type in
the logical part or if there are all considered as machine-independent integers
(unsigned integers or two's complement signed integers).

Rule 30 The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is optional if
there is no ASCII representation for enumeration type to provide, i.e. if there is no
ASCII enumeration type in the logical part.

Rule 31 The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if there is
no ASCII representation for integer or real type to provide, i.e. if there is no
ASCII integer type and no ASCII real type in the logical part.

Rule 32 The types BASIC_TYPE_NAMES and RELATION are optional if there is no
representation to provide.

For all these rules, see also section 3.3.5. of reference [1].

The following example provides a physical data description package, which could be
associated with the logical data description package presented in the previous example. This
logical package defined some basic types:

− one enumeration type (BULLETIN_KIND);

− five 16 bit integer types (YEAR, MONTH, DAY_OF_MONTH, HOUR, MINUTE);

− one 32 bit real type (SECOND);

− four 64 bit real types (KILOMETERS, KM_SEC, RATIO, ANGULAR_DEGREE).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-74 May 1997

These eleven basic types are described in the physical package. They are named in the
enumeration type BASIC_TYPE_NAMES, and their binary or ASCII representations are
provided (five different representations). The following physical description assumes that the
data have been generated on a SUN host machine (with the IEEE convention for the real
generation).

In order to distinguish the templates from the user defined parts, the adopted convention in
the example is that bold text represents the templates, i.e., the constant information.

package physical_CNES_description_01 is

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST ,
LAST_INDEX_FIRST) ;

ARRAY_STORAGE : constant ARRAY_STORAGE_METHOD :=
FIRST_INDEX_FIRST;

type BIT_ORDER is (HIGH_ORDER_FIRST , LOW_ORDER_FIRST) ;
OCTET_STORAGE : constant BIT_ORDER := HIGH_ORDER_FIRST;

type LOCATION_OF_SUBFIELD is record
BEGINNING_AT_BIT_NUMBER : NATURAL_NUMBER ;
ENDING_AT_BIT_NUMBER : NATURAL_NUMBER ;

end record;

MAXIMUM_NUMBER_OF_SUBFIELDS : constant := 255;

type SUBFIELD_NUMBER is range 1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)
of LOCATION_OF_SUBFIELD;

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,
ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001);

.../...

Example 3-62: Complete Physical Description (1 of 4)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-75 May 1997

type INTEGER_PHYSICAL_DESCRIPTION
(NUMBER_OF_SUBFIELDS : SUBFIELD_NUMBER := 1)

is record
COMPLEMENT : SIGN_CONVENTION;
LOCATION : LOCATION_OF_FIELD(1 .. NUMBER_OF_SUBFIELDS);

end record;

type STRING_LIST is array(NATURAL_NUMBER range <>,
NATURAL_NUMBER range <>) of CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (
NUMBER_OF_OCCURRENCES : NATURAL_NUMBER := 0;
NUMBER_OF_CHARACTERS : NATURAL_NUMBER := 0) is record
REPRESENTATION : STRING_LIST (1 .. NUMBER_OF_OCCURRENCES,

1 .. NUMBER_OF_CHARACTERS);
end record;

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record
NUMBER_OF_CHARACTERS : NATURAL_NUMBER ;

end record;

type REAL_PHYSICAL_DESCRIPTION(
NUMBER_OF_SUBFIELDS_IN_EXPONENT : SUBFIELD_NUMBER := 1;
NUMBER_OF_SUBFIELDS_IN_MANTISSA : SUBFIELD_NUMBER := 1)

is record
CONVENTION_USED : LIST_OF_RECOGNIZED_CONVENTIONS;
SIGN_BIT_NUMBER : NATURAL_NUMBER ;
COMPLEMENT : SIGN_CONVENTION;
EXPONENT_BASE : NATURAL_NUMBER ;
BIAS : NATURAL_NUMBER ;
LOCATION_OF_EXPONENT : LOCATION_OF_FIELD

(1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);
LOCATION_OF_MANTISSA : LOCATION_OF_FIELD

(1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);
end record;

.../...

Example 3-62: Complete Physical Description (2 of 4)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-76 May 1997

type BASIC_TYPE_NAMES is (USER_TYPE_BULLETIN_KIND,
USER_TYPE_YEAR, USER_TYPE_MONTH, USER_TYPE_DAY_OF_MONTH,
USER_TYPE_HOUR, USER_TYPE_MINUTE, USER_TYPE_SECOND,
USER_TYPE_KILOMETERS, USER_TYPE_KM_SEC, USER_TYPE_RATIO,
USER_TYPE_DEGREE);

-- actual binary representations
Binary_Representation_01 : constant INTEGER_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_SUBFIELDS => 1, COMPLEMENT => TWOS_COMPLEMENT,
LOCATION => (1 => (0,31)));

ASCII_Representation_01 : constant
ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 9,
REPRESENTATION => (“CARTESIAN” , “KEPLERIAN”));

Binary_Representation_02 : constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1,
CONVENTION_USED => FCSTC000, -- IEEE754
SIGN_BIT_NUMBER => 0,
COMPLEMENT => SIGN_AND_MAGNITUDE,
EXPONENT_BASE => 2,
BIAS => 1023,
LOCATION_OF_EXPONENT => (1 => (1,11)) ,
LOCATION_OF_MANTISSA => (1 => (12,63)));

Binary_Representation_03 : constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1,
CONVENTION_USED => FCSTC000, -- IEEE754,
SIGN_BIT_NUMBER => 0,
COMPLEMENT => SIGN_AND_MAGNITUDE,
EXPONENT_BASE => 2,
BIAS => 127,
LOCATION_OF_EXPONENT => (1 => (1,8)) ,
LOCATION_OF_MANTISSA => (1 => (9,31)));

.../...

Example 3-62: Complete Physical Description (3 of 4)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 3-77 May 1997

type RELATION(choice : BASIC_TYPE_NAMES) is record
case choice is
when USER_TYPE_BULLETIN_KIND =>
 PHYS_BULLETIN_KIND : ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=

ASCII_Representation_01;
when USER_TYPE_YEAR=>
 PHYS_YEAR : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_MONTH=>
 PHYS_MONTH : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_DAY_OF_MONTH=>
 PHYS_DAY_OF_MONTH : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_HOUR=>
 PHYS_HOUR : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_MINUTE=>
 PHYS_HOUR : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_SECOND =>
 PHYS_SECOND: REAL_PHYSICAL_DESCRIPTION :=

Binary_Representation_03;
when USER_TYPE_KILOMETERS=>
 PHYS_KILOMETERS: REAL_PHYSICAL_DESCRIPTION :=

Binary_Representation_02;
when USER_TYPE_KM_SEC =>
 PHYS_KM_SEC: REAL_PHYSICAL_DESCRIPTION :=

Binary_Representation_02;
when USER_TYPE_RATIO =>
 PHYS_RATIO : REAL_PHYSICAL_DESCRIPTION :=

Binary_Representation_02;
when USER_TYPE_DEGREE =>
 PHYS_DEGREE : REAL_PHYSICAL_DESCRIPTION :=

Binary_Representation_02;
end case;
end record;

end physical_CNES_description_01;

Example 3-62: Complete Physical Description (4 of 4)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 4-1 May 1997

4 USING EAST DATA DESCRIPTION RECORD

This section provides an example to illustrate the use of an EAST Data Description Record,
from an end user point of view. Subsection 4.1 explains how to use the logical description,
while 4.2 explains how to use the physical description.

4.1 USING LOGICAL DESCRIPTIONS

The logical part of a data description is required by a user to define the application that will
consume (or make use of) the data. It contains the information relative to the nature of the
received data. A user may be helped by a tool (see 5.4 and annex C) to extract some data from
a data block. The user must be able to identify (or name) the data item from which he wants to
get the value. For that purpose, EAST provides the dot notation.

The described data correspond to the objects (variables or constants) declared in the second
section of the logical package. A name denotes either a declared object or a subcomponent of
a declared object.

The following example gives a simple logical description package:

package logical_CNES_description_02 is

-- first section: declaration of types
type MEASUREMENT is range 0 .. 65000;
for MEASUREMENT'size use 16; -- bits
type SECOND is digits 8 range 0.0000000 .. 60.000000;
for SECOND'size use 64; -- bits
type DATED_MEASUREMENT is record

TEMPERATURE : MEASUREMENT;
DATE_OFFSET : SECOND;

end record;
for DATED_MEASUREMENT use
record

TEMPERATURE at 0 range 0 .. 15;
DATE_OFFSET at 0 range 16 .. 79;

end record;
for DATED_MEASUREMENT'size use 80; -- bits
type MEASUREMENT_BLOCK is array (1..10,1..10) of DATED_MEASUREMENT;
for MEASUREMENT_BLOCK'size use 8000; -- bits

-- second section: declaration of variables
SOURCE_DATA : MEASUREMENT_BLOCK;
end logical_CNES_description_02;

Example 4-1: Complete Logical Description

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 4-2 May 1997

The data object contained in the data block is “SOURCE_DATA”. The access path to the
complete data set is:

“SOURCE_DATA” -- 100 of DATED_MEASUREMENT

The access path to subcomponents are:

“SOURCE_DATA(1..10, 2)” -- 10 of DATED_MEASUREMENT
or “SOURCE_DATA(3,5)” -- 1 DATED_MEASUREMENT
or “SOURCE_DATA(5, 1 .. 5).DATE_OFFSET” -- 5 of SECOND
or “SOURCE_DATA(1,1).TEMPERATURE” -- 1 MEASUREMENT

NOTES

1 The dot notation (“.”) is used to select one component of a record.

2 The slice notation (“(1 .. 5)”) is used to select a number of contiguous elements of an
array.

3 The dot notation and slice notation can be composed to access elements of a record
contained in an array, or elements of an array contained in a record.

4.2 USING PHYSICAL DESCRIPTIONS

The physical part of a data description is required by an interpretation tool, or a specific
decommutation program, to retrieve the values of the described data. The following example
gives a possible physical description package associated with the previous logical description
package.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 4-3 May 1997

package physical_CNES_description_02 is

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST ,
LAST_INDEX_FIRST) ;
ARRAY_STORAGE : constant ARRAY_STORAGE_METHOD :=
FIRST_INDEX_FIRST;

type BIT_ORDER is (HIGH_ORDER_FIRST , LOW_ORDER_FIRST) ;
OCTET_STORAGE : constant BIT_ORDER := HIGH_ORDER_FIRST;

type LOCATION_OF_SUBFIELD is record
BEGINNING_AT_BIT_NUMBER : NATURAL_NUMBER ;
ENDING_AT_BIT_NUMBER : NATURAL_NUMBER ;

end record;

MAXIMUM_NUMBER_OF_SUBFIELDS : constant := 255;

type SUBFIELD_NUMBER is range 1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)
of LOCATION_OF_SUBFIELD;

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,
ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001);

type INTEGER_PHYSICAL_DESCRIPTION
(NUMBER_OF_SUBFIELDS : SUBFIELD_NUMBER := 1)

is record
COMPLEMENT : SIGN_CONVENTION;
LOCATION : LOCATION_OF_FIELD(1 .. NUMBER_OF_SUBFIELDS);

end record;

.../...

Example 4-2: Complete Physical Description (1 of 3)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 4-4 May 1997

type REAL_PHYSICAL_DESCRIPTION(
NUMBER_OF_SUBFIELDS_IN_EXPONENT : SUBFIELD_NUMBER := 1;
NUMBER_OF_SUBFIELDS_IN_MANTISSA : SUBFIELD_NUMBER := 1)

is record
CONVENTION_USED : LIST_OF_RECOGNIZED_CONVENTIONS;
SIGN_BIT_NUMBER : NATURAL_NUMBER ;
COMPLEMENT : SIGN_CONVENTION;
EXPONENT_BASE : NATURAL_NUMBER ;
BIAS : NATURAL_NUMBER ;
LOCATION_OF_EXPONENT : LOCATION_OF_FIELD

(1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);
LOCATION_OF_MANTISSA : LOCATION_OF_FIELD

(1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);
end record;

type BASIC_TYPE_NAMES is (USER_TYPE_MEASUREMENT,
USER_TYPE_SECOND);

-- actual binary representations
Binary_Representation_01 : constant INTEGER_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_SUBFIELDS => 1, COMPLEMENT => UNSIGNED,
LOCATION => (1 => (0,15)));

Binary_Representation_02 : constant REAL_PHYSICAL_DESCRIPTION :=
(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1,
NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1,
CONVENTION_USED => FCSTC000, -- IEEE754
SIGN_BIT_NUMBER => 0,
COMPLEMENT => SIGN_AND_MAGNITUDE,
EXPONENT_BASE => 2,
BIAS => 1023,
LOCATION_OF_EXPONENT => (1 => (1,11)) ,
LOCATION_OF_MANTISSA => (1 => (12,63)));

.../...

Example 4-2: Complete Physical Description (2 of 3)

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 4-5 May 1997

type RELATION(choice : BASIC_TYPE_NAMES) is record
case choice is

when USER_TYPE_MEASUREMENT =>
PHYS_MEASUREMENT : INTEGER_PHYSICAL_DESCRIPTION :=

Binary_Representation_01;
when USER_TYPE_SECOND =>

PHYS_SECOND: REAL_PHYSICAL_DESCRIPTION :=
Binary_Representation_02;

end case;
end record;

end physical_CNES_description_02;

Example 4-2: Complete Physical Description (3 of 3)

The value of the data item named “SOURCE_DATA(1,1).TEMPERATURE” is retrieved
according to the following algorithm:

SOURCE_DATA(1,1) is the first element of the array. TEMPERATURE is located on
the first 16 bits of an element of the array SOURCE_DATA(1,1). Temperature is
therefore located on the first 16 bits of the data block. These 16 bits correspond to an
unsigned integer, whose binary representation indicates that the most significant bit is
the first encountered (bit 0) and that the least significant bit is the last bit encountered
(bit 15).

The value of the data item named “SOURCE_DATA(3,5).DATE_OFFSET” is retrieved
according to the following algorithm:

SOURCE_DATA(3,5) is the 43th element of the array because the array storage method
specifies that the first index varies first. DATE_OFFSET is located on the last 64 bits of
an element of the array (i.e., from bit 16 to bit 79). The size of an element of the array is
80 bits. The DATE_OFFSET of the 43th element is therefore located from bit (42*80 +
16) to bit (42*80 + 79), i.e., from bit 3376 to bit 3439. These 64 bits correspond to an
IEEE real whose binary representation indicates that the exponent is located from bit 1
to bit 11 and that the mantissa is located from bit 12 to bit 63.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 5-1 May 1997

5 RECOMMENDED PRACTICES AND LIMITATIONS

Since EAST is based on the Ada programming language, there are a number of restrictions
and practices, which are described in 5.1 and 5.2.

5.1 RESERVED KEYWORDS

Since the EAST syntax is fully compatible with the Ada syntax, it might be possible to include
an EAST description in an Ada application. In order to keep the compatibility, it is
recommended that EAST reserved keywords as well as pure Ada reserved keywords not be
used.

Below are listed the EAST reserved keywords which are, for some of them, Ada reserved
keywords too, and for others, pure EAST reserved identifiers. The other Ada keywords are
listed too.

5.1.1 EAST (AND ADA) KEYWORDS

array digits is package type
at

end null range use
case record
constant for of when

others subtype

5.1.2 PURE EAST RESERVED IDENTIFIERS

virtual_... word_32_bits word_16_bits

NOTE − Identifiers of the physical part (INTEGER_PHYSICAL_DESCRIPTION,
USER_TYPE_..., RELATION, etc.) are not EAST reserved identifiers, because
they are allowed in the logical part of the description for the definition of types and
variables.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 5-2 May 1997

5.1.3 PURE ADA (AND NOT EAST) KEYWORDS

abort delta if pragma tagged
abs do in private task
abstract procedure terminate
accept else limited protected then
access elsif loop
aliased entry raise until
all exception mod rem
and exit renames while

new requeue with
begin function not return
body reverse xor

generic or
declare goto out select
delay separate

NOTE − These keywords are ADA95 keywords (see reference [7]).

5.2 RECOMMENDED USAGE OF THE EAST SYNTAX

Section 3 provides information on how to define types, using the EAST syntax, in order to
logically describe data. Nevertheless, some recommendations are summarized in this section
to enhance the readability of the data descriptions. An EAST description might be
syntactically correct but might have at the same time a very poor expressiveness.

EAST is not intended to define formal semantics, but the grouping of types in structures and
the naming of types convey a large amount of semantic information to the human reader.

Type Names

Type Names should provide indications on the data that they describe. For example, a
type called SIXTEEN_BIT_INTEGER_TYPE gives less semantic information than a
type called ORBIT_COUNTER, or SYNCHRONIZATION_VALUE, although all
these types are implemented using a 16 bit integer.

Acronyms should be avoided: for example, the enumeration literals “Telemetry” and
“Telecommand” should be preferred to “TM” and “TC”, although the actual
representations are the character strings: “TM” and “TC”.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 5-3 May 1997

Type Natures

Enumeration types should be used in preference to integer types, each time the integer
values have a particular meaning. For example, a type called MONTH, which is used to
define a date, can be considered as an integer with the range: 1 to 12. It can also be
defined as an enumeration type that has 12 alternative values: JANUARY,
FEBRUARY, ..., DECEMBER. In this case, an enumeration representation clause
specifies the enumeration values from 1 to 12.

Type Structuring

The grouping of types into structures is recommended each time data types are in
relationship together: a repetition of measurements should be described by an array. The
elements of a date (year, month, day, etc.) should be aggregated into a structure (e.g.,
called DATE).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 5-4 May 1997

5.3 IDENTIFIED LIMITATIONS OF EAST TO DESCRIBE DATA

The following limitations have been identified:

a) Discrete discriminants

In EAST, the type of a discriminant must be discrete. Because of this fact, only
enumeration types and integer types are allowed to discriminate records: the binary and
the ASCII representations are allowed, so it is possible to have character strings as
discriminants when using the ASCII representation of enumeration types.

Other types cannot be considered to be discriminants; e.g., a component of a record
cannot depend on the value of a real, of an array, of a record, etc.

− Real types have been banished because the floating point representation
(that is an approximation of the actual value) forbids any comparison
between real values.

− Array types and record types are aggregation types; the need relative to a
record or to an array as a discriminant corresponds to components that
depend at the same time on the value of many other components. This can
be translated into multiple discriminants. Subsection 3.2.11 explains how to
use more than one discriminant to discriminate the same component in a
record.

b) Static discriminants

A discriminant must be a static expression, which means that it cannot result from a
computation. For example, EAST does not allow the specification of a component A
that exists if the value of a component B plus the value of the component C has a given
value.

This problem is an algorithmic problem. It can be solved at data design time. During the
data design process, it is easy to add a component within the data block that represents
the result of the computation, and to make this component the discriminant.

c) Multiple ranges

Multiple ranges are not provided. So it is impossible to describe, using EAST, an integer
type whose values vary between 0 and 5 and then between 10 and 15, for example. And
it is therefore impossible to specify that the index of an array varies between 0 and 5,
and between 10 and 15.

Since integer types are used to describe whole numbers resulting from measurements of
the real world, it would be curious if the measured phenomenon were not continuous. If
the integer values correspond to something else that is discontinuous, then an
enumeration type is possibly appropriate to describe these values. It is easy, using
enumeration clauses, to specify a gap between two consecutive enumeration literals.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 5-5 May 1997

d) Characters

The only character set retained in EAST is the "Latin Alphabet No. 1" character set (see
reference [6]).

e) Array Storage applicability

The array storage method is applicable to the whole description. If a data set is
composed of data from different sources, all the arrays must be stored in the same way.

5.4 USE OF TOOLS

This section contains a brief list of useful tools in an EAST context. More details about
available tools are provided in Annex C.

An EAST Data Description Generator is necessary to assist in designing and generating
automatically an EAST compliant description of data, relieving the user from concern about
the EAST syntax.

The EAST language is based on the Ada syntax. But it contains additional semantic
information, so it is possible using EAST to describe most of the data that are to be
exchanged. That is the reason why an Ada Compiler is not sufficient to ensure the consistency
of an EAST Data Description Record. An EAST Syntax Checker might therefore be useful.

The use of EAST as a Data Description Language does not preclude the use of programming
languages other than Ada for the application accessing the data. In most cases, a software
interface between the application and the data is necessary, i.e., a tool that parses and analyses
the Data Description Record, and sometimes a tool that converts the data to the “right”
format, i.e., a readable format for the application. Such a tool is called a Data Interpreter.
Ada is a privileged language (but not the only possible language) for an application accessing
data described using EAST, because in some cases EAST data specifications can be included
in the Ada application code (with some modifications that are the addition of specific Ada
language instructions to the Ada compiler like “pragma pack” and the suppression of some
representation clauses used to promote compiler independence in EAST).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page 6-1 May 1997

6 EAST AND DATA DESCRIPTION LANGUAGE
REQUIREMENTS

This section is a discussion on the compliance of the EAST language with the requirements
that a Data Description Language shall be designed to satisfy.

These requirements and their rationales are listed in 1.2.

R1. Good readability

The readability is not intrinsic to the EAST language. The recommended usage of the
EAST language relative to the type naming and type structuring (see 5.2) enhances the
readability of EAST data descriptions.

R2. Support of basic types

The EAST language supports character, enumeration, integer and real types.

R3. Data type definition capabilities

The EAST language supports the programming language concept, called type, that
defines a model, defined once, that can be used to create many occurrences of the
model.

R4. Data type structuring capabilities

The EAST language supports array and record types. An array type is the relationship
of homogeneous data items, i.e., describes a repetition of data items of the same type. A
record is the relationship of heterogeneous data items, i.e., describes an ordered
aggregation of data items of any type.

R5. Separation of the description from the data

EAST descriptions are physically separated from the data to which they are related.

R6. Physical representation capabilities

The EAST physical packages specify the bit pattern representation of the described
data.

These requirements are high-level requirements, specified in the document “Language
Usage in Information Interchange” (see reference [2]). Additional detailed level
requirements and EAST compliance are listed in Annex E.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page A-1 May 1997

ANNEX A

ACRONYMS AND GLOSSARY

This annex defines key acronyms and the glossary of terms which are used throughout this
Report to describe the Data Description Language EAST.

A 1 ACRONYMS

ADID Authority and Description IDentifier
ADU Application Data Unit
ASCII American Standard Code for Information Interchange
CA Control Authority
CCSDS Consultative Committee for Space Data Systems
DDL Data Description Language
DDR Data Description Record
DDU Description Data Unit
DED Data Entity Dictionary
DIL Data Interchange Language
EAST Enhanced Ada SubseT
EDU Exchange Data Unit
MACAO Member Agency Control Authority Office
MSB Most Significant Bit
LSB Least Significant Bit
SFDU Standard Formatted Data Unit

A 2 GLOSSARY OF TERMS

ADID: in the context of EAST, an ADID is an identifier of the EAST recommendation within
the CCSDS organization. See Reference [4].

Array type: an array type is a composite type whose components are all of the same type.
Components are selected by indexing.

Based literal: a based literal is a numeric literal expressed in a form that specifies the base
explicitly.

Bit string: a bit string is a sequence of bits, each having the value 0 or 1.

Character literal: a character literal is formed by enclosing a graphic character between two
apostrophe characters.

Character type: a character type is an enumeration type that represents a character set.

Comment: a comment starts with two adjacent hyphens and extends up to the end of the line.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page A-2 May 1997

Composite type: a composite type is a collection of components of the same or different
types.

Constant: a constant is a keyword that indicates that the identifier it qualifies has a unique
and specified value.

Constrained array: a constrained array is an array with a constant number of elements.

Delimiter: a delimiter is one of the following compositions of special characters: & ' ()
* + , - . / : ; < = > | => .. ** := /= >= <= << >> <>

Discrete type: a discrete type is either an integer type or an enumeration type. Discrete types
may be used, for example, in case statements and as array indexes.

Discriminant: a discriminant is a component of a record type whose value influences the
structure of this record.

Elementary type: an elementary type does not have components.

Enumeration representation clause: an enumeration representation clause specifies the bit
pattern for each literal of the corresponding enumeration type.

Enumeration type: an enumeration type is defined by the list of its values, called
enumeration literals, which may be identifiers or character literals. All values for a given
enumeration type are different.

Identifier: an identifier is composed of letters, digits and underline characters.

Length clause: a length clause specifies the amount of storage in bits associated with a type.

Lexical element: a lexical element is either a delimiter, an identifier, a numeric literal, a string
literal or a comment.

Literal: a literal is a value represented by its value itself instead of an identifier. A literal can
be specialized as a numeric literal, an enumeration literal, a character literal, or a string literal.

Marker : a marker is a constant value provided by a data description. This value will be found
in the data as an end-delimiter of a repetition.

Numeric literal : a numeric literal is the value of a number, expressed by means of characters.

Object: an object is either a constant or a variable.

Predefined type: a predefined type is a type provided by EAST, that is, a type that can be
used in any EAST description without being previously declared.

Record representation clause: a record representation clause specifies the storage
representation of the record type on the medium, that is, the order, position and size of record
components (including discriminants, if any).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page A-3 May 1997

Record type: a record type is a composite type consisting of zero or more named
components, possibly of different types.

Representation clause: representation clauses specify the mapping between types of the
language and their physical representation.

Scalar type: scalar types are discrete types and real types.

Separator: a separator is any of a space character, a control character or the end of a line (see
3.1).

String literal: a string literal is formed by a sequence of graphic characters (possibly none)
enclosed between two quotation marks used as string brackets.

Subtype: a subtype is a type together with a constraint, which constrains the values of the
type to satisfy a certain condition. The values of a subtype are a subset of the values of its
type.

Type: a type is a named set of characteristics. This name can be used to define sets of values.

Unconstrained array: an unconstrained array is an array with a variable number of elements.

Variable: a variable is an identifier that represents a data item occurrence.

Variant part: a variant part of a record specifies alternative record components, dependent
on the discriminant of the record. Each value of the discriminant establishes a particular
alternative of the variant part.

Virtual Discriminant: a virtual discriminant is a discriminant that is not included in the
composite type that it discriminates.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page B-1 May 1997

ANNEX B

SYNTAX RULES

This annex contains the usage rules identified in this document, followed by the page number
to which they refer.

Rule 1: The enumeration literals listed in an enumeration type definition are
identifiers or character literals.. 3-7

Rule 2: The size of an enumeration type must always be provided; i.e., a length
clause is mandatory.. 3-7

Rule 3: An enumeration representation clause is optional... 3-7

Rule 4: If there is an enumeration representation clause, then each literal of the
enumeration type must be provided with a unique bit pattern. The numeric
value associated with this bit pattern must satisfy the ordering relation of
the type (i.e., must increase). If no enumeration representation clause is
provided, then default integer codes are presumed for binary encoded
enumeration types: the value of the first listed enumeration literal is zero;
the value for each other enumeration literal is one more than for its
predecessor in the list. If no enumeration representation clause is provided,
the enumeration type is maybe ASCII encoded according to the physical
part of the EAST description (see 3.3.5). ... 3-7

Rule 5: The types CHARACTER and STRING(F5) do not have to be declared in a
data description. They are predefined types of EAST....................................... 3-9

Rule 6: The size of an integer type must always be specified....................................... 3-10

Rule 7: The size of a real type must always be specified... 3-11

Rule 8: A component on which depends the existence of other components is
called a discriminant for the record type. The alternative lists of
components are called variants of the record.. 3-14

Rule 9: A length clause must be provided for a record, every time it is possible. In
some cases, no length clause can be provided for the record, because the
length is undefined... 3-14

Rule 10: If a record contains one or more discriminants, it is mandatory to provide a
default discriminant value for each of them.. 3-14

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page B-2 May 1997

Rule 11: A length clause must be provided for an array, every time it is possible.
For unconstrained array types, no length clause can be provided because
they have an undefined number of elements. The number of elements is
specified at the declaration of a data of this type.. 3-17

Rule 12: In the case of an unconstrained array, the constraint (i.e., the number of
elements) is given to the instance at its declaration... 3-17

Rule 13: If the lower bound of an index range is greater than the upper bound, the
corresponding array row/column has no component....................................... 3-17

Rule 14: The variable that is declared immediately before the constant occurs an
undetermined number of times, the last instance being followed by the
constant value.. 3-22

Rule 15: The clause “when others =>” is mandatory if all the discriminant values are
not explicitly named in the record type definition.. 3-33

Rule 16: Component locations must not overlap, except if the components belong
to distinct variants (i.e., belong to different alternative lists of
components).. 3-33

Rule 17: The EAST Syntax requires the declaration of the fixed elements before the
optional ones in a structure. ... 3-33

Rule 18: Record representation clauses allow one or more elements of the fixed part
to be placed after a variant part, if and only if the variant part has a
constant length.. 3-33

Rule 19: A record representation clause must be provided every time it is possible.
For variable components, representation clauses cannot be provided.............. 3-33

Rule 20: The order of record components is determined by the record
representation clause. If the record representation clause is incomplete, the
order of the components that have no representation clause is determined
from the order within the record type definition... 3-33

Rule 21: Each component identifier which begins with “VIRTUAL_” does not
represent any data occurrence.. 3-33

Rule 22: EAST forbids identical names in a record... 3-39

Rule 23: The number of characters used to encode the enumeration type must be
the same for every enumeration literal of the type... 3-60

Rule 24: All characters (i.e., the 256 characters of the “Latin Alphabet No. 1”—see
reference [6]) are allowed and significant, including the space character......... 3-60

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page B-3 May 1997

Rule 25: The physical representations of the enumeration literals are provided in the
order of their declaration in the logical part.. 3-60

Rule 26: The array storage is optional (ARRAY_STORAGE_METHOD type and
ARRAY_STORAGE constant) if there is no multi-dimensional array in the
logical part, or if the method is FIRST_INDEX_FIRST (default value).......... 3-73

Rule 27: The octet storage is optional (BIT_ORDER type and OCTET_STORAGE
constant) if the method is HIGH_ORDER_FIRST (default value).................. 3-73

Rule 28: The type REAL_PHYSICAL_DESCRIPTION is optional if there is no
binary representation for real type to provide, i.e. if there is no binary real
type in the logical part... 3-73

Rule 29: The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is
no binary representation for integer type to provide, i.e. if there is no
binary integer type in the logical part or if there are all considered as
machine-independent integers (unsigned integers or two's complement
signed integers).. 3-73

Rule 30: The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is
optional if there is no ASCII representation for enumeration type to
provide, i.e. if there is no ASCII enumeration type in the logical part............. 3-73

Rule 32: The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if
there is no ASCII representation for integer or real type to provide, i.e. if
there is no ASCII integer type and no ASCII real type in the logical part........ 3-73

Rule 32: The types BASIC_TYPE_NAMES and RELATION are optional if there
is no representation to provide... 3-73

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page C-1 May 1997

ANNEX C

TOOLS FOR AN EAST ENVIRONMENT

This annex lists some of the available tools that are useful to check, generate, parse and
analyze EAST DDRs.

The first group of tools is useful to the data definers, while the second group is useful to end
users.

For additional information about the available tools, please contact the CCSDS Secretariat or
the relevant MACAO (see reference [11]).

C 1 DATA DEFINER TOOLS

D D R G e n e r a t o r

D D R

D D R c h e c k e r

D D R

Cont ro l
Center

Data Genera tor

Da ta

D D R

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page C-2 May 1997

C 1.1 DATA DESCRIPTION RECORD GENERATOR

The description of data, using EAST, can easily be automated: in particular, the physical
description which follows precise rules, as described in 3.3. A tool that automatically
generates DDRs (including logical and physical description) is available. This tool, based on a
Graphical User Interface, allows users, without any notion of the EAST language, to describe
data logically, and the tool automatically generates a physical description according to the
nature of a selected host machine. This physical description does not have to be visible to the
user. On the contrary, the logical description is easy to understand (see 3.2) and is readable by
any user.

C 1.2 DATA DESCRIPTION RECORD SYNTAX CHECKER

Most of the EAST DDRs should be produced by a tool that automatically generates correct
DDRs. Nevertheless an EAST Syntax Checker might be useful to check the syntax of an
EAST DDR.

If no syntax checker is available, the EAST description can be passed through an Ada
compiler, because of the full compatibility of the EAST syntax with the Ada syntax. But one
must keep in mind that such a verification does not ensure that the description is correct. If
the description includes non-EAST features that are Ada features, the Ada compiler will not
identify these.

C 1.3 DATA GENERATOR

Some users may have to describe data that will be generated in the future and does not yet
exist. In this case, in addition to a data description tool, a data generation tool could be useful.
This tool would generate data on a medium exactly as the user has described them, regardless
of the host machine used to generate.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page C-3 May 1997

C 2 END USER TOOLS

C 2.1 DATA INTERPRETER

D D R

D a t a

Data In te rp re te r

D a t a i n P C F o r m a t

Data In te rp re te r

D a t a i n S U N F o r m a t

Data In te rp re te r

D a t a i n V A X F o r m a t

S U N

P C

V A X

Generally, it is necessary to have an Interpretation tool that parses, analyses, and converts
data according to the host machine that will make use of the data. Such a tool is available.
This tool analyses an EAST DDR, and offers access services from an application to data
blocks described by this DDR.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page C-4 May 1997

C 2.2 DATA FORMATTER

D D R

D a t a

Da ta i n PC Fo rma t

D a t a i n S U N F o r m a t

D a t a i n V A X F o r m a t

T a r g e t D D R

A n y H o s t

D a ta F o rm a tte r

If an interpretation tool is not available on a target machine, the use of a data formatter allows
the interpretation of the data and their generation in a new format, regardless of the host
machine used for the formatting process. This tool is mainly useful for the rehabilitation of
historical data (e.g., to change some “strange” 60-bit reals into IEEE754 64 bit reals).

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page D-1 May 1997

ANNEX D

DATA DESCRIPTION RECORD EXAMPLES

This annex contains an example of a DDR in EAST.

The following EAST DDR provides the description of an imaginary (but realistic) telemetry.

A textual description, a graphical representation, and finally an EAST description are provided
as follows:

D 1 TEXTUAL DESCRIPTION

The telemetry is a flow of FORMATs. Each FORMAT is preceded by a SYNCHRO bit
pattern (DF3 hexadecimal bit pattern). Each FORMAT is composed of 28 LINEs.

Each LINE begins with a field that identifies which scientific INSTRUMENT (CAMERA,
ALTIMETER or INTERFEROMETER) data are provided by this LINE.

The first LINE field is followed by a DATE related to the first INSTRUMENT VALUE
provided by the LINE. This DATE is composed of three sub-fields (DAY, MONTH and
YEAR).

The end of the LINE (following INSTRUMENT and DATE) depends on the
INSTRUMENT:

− in a CAMERA line there are 40 (8 bits) VALUEs from the CAMERA;

− in an ALTIMETER line there are 20 (16 bits) VALUEs from the ALTIMETER;

− in an INTERFEROMETER line there are 10 (32 bits) VALUEs from the ALTIMETER.

So, each VALUE field has a constant (320 bits) length.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page D-2 May 1997

D 2 GRAPHICAL DESCRIPTION

NOTE − The # sign after a field identifier means that this field is optional depending on the
value of another field. Here each value field presence depends on the value of the
instrument field.

D 3 FORMAL EAST DESCRIPTION

package logical_TELEMETRY is

type A_SYNCHRO_PATTERN is (SYNCHRO_PATTERN) ;
for A_SYNCHRO_PATTERN use (SYNCHRO_PATTERN => 16#DF3#) ;
for A_SYNCHRO_PATTERN'size use 12 ; -- bits

type AN_INSTRUMENT is (CAMERA , ALTIMETER , INTERFEROMETER) ;
for AN_INSTRUMENT use (CAMERA => 0 , ALTIMETER => 1 ,

INTERFEROMETER => 2) ;
for AN_INSTRUMENT'size use 2 ; -- bits

type A_DAY_IN_A_MONTH is range 1 .. 31 ;
for A_DAY_IN_A_MONTH'size use 5 ; -- bits

type A_MONTH is (JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,
AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER) ;

for A_MONTH use (JANUARY => 1 , FEBRUARY => 2 , MARCH => 3 , APRIL => 4 ,
MAY => 5 , JUNE => 6 , JULY => 7 , AUGUST => 8 ,
SEPTEMBER => 9 , OCTOBER => 10, NOVEMBER => 11,
DECEMBER => 12) ;

for A_MONTH'size use 4 ; -- bits

type A_YEAR is range 1950 .. 2100 ;
for A_YEAR'size use 12 ; -- bits

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page D-3 May 1997

type A_DD_MM_YY_DATE is record
DAY : A_DAY_IN_A_MONTH ;
MONTH : A_MONTH ;
YEAR : A_YEAR ;

end record ;
for A_DD_MM_YY_DATE'size use 21 ; -- bits
for A_DD_MM_YY_DATE use record

DAY at 0 * WORD_32_BITS range 0 .. 4 ;
MONTH at 0 * WORD_32_BITS range 5 .. 8 ;
YEAR at 0 * WORD_32_BITS range 9 .. 20 ;

end record ;

type A_CAMERA_VALUE is range 0 .. 255 ;
for A_CAMERA_VALUE'size use 8 ; -- bits

type CAMERA_VALUE_INDEX is range 1 .. 40 ;
for CAMERA_VALUE_INDEX'size use 6 ; -- bits

type CAMERA_DATA_VALUES is array (CAMERA_VALUE_INDEX) of
A_CAMERA_VALUE ;

for CAMERA_DATA_VALUES'size use 320 ; -- bits

type AN_ALTIMETER_VALUE is range 0 .. 65535 ;
for AN_ALTIMETER_VALUE'size use 16 ; -- bits

type ALTIMETER_VALUE_INDEX is range 1 .. 20 ;
for ALTIMETER_VALUE_INDEX'size use 5 ; -- bits

type ALTIMETER_DATA_VALUES is array (ALTIMETER_VALUE_INDEX) of
AN_ALTIMETER_VALUE ;

for ALTIMETER_DATA_VALUES'size use 320 ; -- bits

type AN_INTERFEROMETER_VALUE is range 0 .. 2147483646 ;
for AN_INTERFEROMETER_VALUE'size use 32 ; -- bits

type INTERFEROMETER_VALUE_INDEX is range 1 .. 10 ;
for INTERFEROMETER_VALUE_INDEX'size use 4 ; -- bits

type INTERFEROMETER_DATA_VALUES is array
(INTERFEROMETER_VALUE_INDEX) of AN_INTERFEROMETER_VALUE;

for INTERFEROMETER_DATA_VALUES'size use 320 ; -- bits

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page D-4 May 1997

type A_TELEMETRY_LINE (INSTRUMENT : AN_INSTRUMENT := CAMERA) is
record

DATE : A_DD_MM_YY_DATE ;
case INSTRUMENT is

when CAMERA =>
CAMERA_DATA : CAMERA_DATA_VALUES ;

when ALTIMETER =>
ALTIMETER_DATA : ALTIMETER_DATA_VALUES ;

when INTERFEROMETER =>
INTERFEROMETER : INTERFEROMETER_DATA_VALUES ;

when OTHERS =>
null ;

end case ;
end record ;
for A_TELEMETRY_LINE use record

INSTRUMENT at 0 * WORD_32_BITS range 0 .. 1 ;
DATE at 0 * WORD_32_BITS range 2 .. 22 ;
CAMERA_DATA at 0 * WORD_32_BITS range 23 .. 342 ;
ALTIMETER_DATA at 0 * WORD_32_BITS range 23 .. 342 ;
INTERFEROMETER at 0 * WORD_32_BITS range 23 .. 342 ;

end record ;

type A_TELEMETRY_LINE_NUMBER is range 1 .. 28 ;
for A_TELEMETRY_LINE_NUMBER'size use 5 ; -- bits

type A_TELEMETRY_FORMAT is array (A_TELEMETRY_LINE_NUMBER) of
A_TELEMETRY_LINE ;

type A_TELEMETRY_PACKET is record
SYNCHRO : A_SYNCHRO_PATTERN ;
TELEMETRY_FORMAT : A_TELEMETRY_FORMAT ;

end record ;
for A_TELEMETRY_PACKET use record

SYNCHRO at 0 * WORD_32_BITS range 0 .. 11 ; -- bits
end record ;

TELEMETRY_PACKET : A_TELEMETRY_PACKET ;

end logical_TELEMETRY ;

package physical_TELEMETRY is

-- of no use

end physical_TELEMETRY;

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page D-5 May 1997

NOTE − The physical part of an EAST description usually includes the representation of
scalar types, the way of storing arrays on the medium and the way of storing octets
on the medium. In this example, there are no reals, no machine-dependent integers
and no ASCII encoded scalar types, so the part related to the representation of
scalar types is useless. The arrays are all one-dimensional arrays, so the
information related to the way of varying indices is useless. The way of storing
octets is by default HIGH_ORDER_FIRST, so this information item can also be
missing.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page E-1 May 1997

ANNEX E

COMPLIANCE MATRIX

This annex provides a compliance matrix according to detailed data description requirements.

Requirements EAST Compliance

General features

Naming of base data types yes
Aggregation of base data types yes
Naming of aggregations yes
Aggregation of aggregations yes
Choice (by discriminant) of base data types yes

Immediately preceding discriminant yes
Remote preceding discriminant yes

Choice (by discriminant) of aggregations yes
Immediately preceding discriminant yes
Remote preceding discriminant yes
Calculated discriminant no

Arrays of base data types yes
Arrays of aggregations yes

Arrays of >2 dimensions yes

Features by base data type

Integers (binary) yes
Complement types supported yes

0’s yes
1’s yes
2’s yes

Bit ordering yes
Random or special ordering yes

Byte ordering (MSB, LSB) yes
Other byte ordering no

Maximum and minimum value specifiable yes
Multiple ranges specifiable no

Character-coded numerical yes

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page E-2 May 1997

Enumerated yes
Highly flexible naming yes
Size in bits specifiable yes
Bit ordering yes4

Byte ordering yes
Physical representation yes

Logical no5

User definitions of TRUE and FALSE yes
Real yes

Size in bits specifiable yes
Maximum and minimum value specifiable yes
Multiple ranges specifiable no
Multiple locations of exponent/mantissa yes
Algorithm used is specifiable yes
Exponent position yes

Size in bits yes
Bit ordering yes
Byte ordering yes
Bias is specifiable yes

Mantissa position yes
Size in bits yes
Bit ordering yes
Byte ordering yes

Standard representations
IEEE754 yes
DEC VAX yes
IBM “3081” yes
Mil_STD_1750A yes
others yes6

4 The bit ordering and byte ordering are linked together and specified in EAST using the type
“BIT_ORDER”.

5 The logical type is not predefined in EAST, but can be user-defined with the enumerated type.

6 Every new standard can be accommodated in EAST.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page E-3 May 1997

Bit string yes
Size in bits specifiable yes
Bit ordering yes4

Byte ordering yes
Permitted bit patterns yes
Naming of bit pattern yes

Octet string yes
Size in octets yes
Octet ordering yes

Non sequential order no
Permitted values no

Null yes
Character string yes

Size in characters specifiable yes
Single byte characters yes
Double byte characters no
Diff erent character sets yes
Definable subsets yes
Permitted values yes

Other useful types
Times no7

Dates no7

Discriminants by value of

Integer yes
Enumerated yes
Logical yes
Bit string yes
Octet string no
Character string no
Aggregations no

7 Not predefined in EAST but user-definable.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page E-4 May 1997

Operations involving discriminants

Logical operations on several discriminants yes
Arithmetic operations on several discriminants no
Select an element on a multi-value discriminant yes
If - Then -Else / Case yes
Do until a discriminant reaches a limit no
Do While no
Do until no
Repeat until a calculated discriminant is equaled no

Software support

Tool to generate description yes
Tool to generate in conformity with data from description no
Tool to check description syntax no
Tool to parse description and associated data,
and build data structure tree yes
Tool to browse data structure tree and present/return values yes
Library to access data structures/values from software (callable tools) prototype

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page F-1 May 1997

ANNEX F

COMPARISON BETWEEN ADA AND EAST

This annex provides the main differences between the Ada programming language and EAST.
It is mainly addressed to Ada programmers.

F1 on page 3-5 The Ada syntax allows any positive integer for the base; EAST indeed
restricts the possible base values to 2, 8, 10 and 16.

F2 on page 3-6 In Ada, the value of a length clause specifies an upper bound for the
number of bits to be allocated to instances of the given type. In EAST, the
value specifies the exact number of bits that any instance of the given type
occupies.

F3 on page 3-7 The rule 4 states that numeric value must increase: this EAST syntax rule is
inherited from the Ada programming language and has been maintained for
compatibility reasons.

F4 on page 3-8 The Ada predefined type “BOOLEAN”, which is in Ada a particular
enumeration type, is not provided in EAST as a predefined EAST type,
because this Ada type is implementation-defined. The bit patterns
associated with the values “TRUE” and “FALSE” depend on the host
machine. The length of the predefined type BOOLEAN also depends on
the host machine.

F5 on page 3-9 The predefined types CHARACTER and STRING are exactly the same as
in Ada (see reference [7]).

F6 on page 3-16 The declaration of data instances that have a variable number of elements is
correct because of the default discriminant required by rule 10. In Ada, the
default discriminant is a requirement only if there is an unconstrained part
in the variant structure. In EAST, the default discriminant is always
mandatory. Therefore, in EAST, every instantiation does not have to
include a discriminant value although the variant structure is required to
have a discriminant.

F7 on page 3-24 In Ada, a record representation clause specifies the storage representation
of records in memory, that is the order, position and size of record
components in memory of a given machine. In EAST, the record
representation clause specifies the actual storage representation on the
medium.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page F-2 May 1997

F8 on page 3-32 If the logical part of and EAST description should be incorporated in an
Ada program, the following statements should be first added:

with System; -- before the keyword package

and the definition of the chosen distance for record representation clauses:

WORD_16_BITS : constant = 16/System.Storage_Unit;
or
WORD_32_BITS : constant = 32/System.Storage_Unit;

The statement “with System;“ is referred to the System package
implemented on an Ada Compiler. The expression
“16/System.Storage_Unit” represents 16 bits while the expression
“32/System.Storage_Unit” represents 32 bits, independently of the machine
configuration.

EAST only provides two numbers WORD_16_BITS and
WORD_32_BITS, and not for example WORD_8_BITS or
WORD_64_BITS. If the user wants to define one of the two last numbers
and use it in a record representation clause, he must be aware, that the use
of an 8 bit word is not portable on any architecture (e.g., not allowed on a
1750-A machine that has a 16 bit architecture). In the same way, a 64 bit
word is not used on usual machines.

F9 on page 3-51 The Ada programming language offers some predefined types and subtypes
as character, string, Boolean, integer, float, natural, positive, etc.

Some of them are completely defined, like CHARACTER and STRING.
So they can be widely used.

Some other ones (BOOLEAN, INTEGER, FLOAT, etc.) are
implementation-defined: their binary representations (sign position, etc.)
depend on the implementation. Such implementation-defined types must
therefore be banished in any logical description. They are therefore not
provided by EAST for the definition of data. There is no use restriction of
these types in the physical part of an EAST description.

The subtypes of implementation-defined types must be banished too:

subtype NATURAL is INTEGER range 0 .. INTEGER'LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

E.g., the INTEGER predefined type is a 16 bit integer on a PC-DOS
machine and a 32 bit integer on a SUN-UNIX machine.

F10 on page 3-65 An EAST definition must appear before it is used. This rule is inherited
from Ada.

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 645.0-G-1 Page I-1 May 1997

INDEX

Array type 3-15; 3-16; 5-4; A-1

ASCII Representation 3-40; 3-42; 3-43; 3-59; 3-
60; 3-61; 3-62; 3-63; 3-73; 3-74; 5-4; B-3

Based literal A-1

Character literal A-1

Character type 3-9; A-1

Comment 3-1; 3-2; A-1

Composite type A-2

Constant 3-3; 3-15; 3-20; 3-21; 3-22; 3-23; 3-26;
3-33; 3-41; 3-45; 3-50; 3-54; 3-55; 3-58; 3-60;
3-61; 3-63; 3-70; 3-71; 3-73; 3-74; 3-76; 4-3;
4-4; 5-1; A-2; B-3; D-1; F-2

Delimiter 3-1; 3-2

Discrete type A-2

Discriminant 3-14; 3-25; 3-33; 3-40; 5-4; A-2; A-
3; B-1; B-2; E-1; E-4; F-1

Distance 1-2; 3-32; F-2

Enumeration literal 3-7

Enumeration representation clause 3-6; 3-40; A-
2

Enumeration type 3-5; 3-6; 3-7; 3-51; 3-60; 5-3;
A-2

Identifier 2-2; 3-1; 3-2; 3-33; 3-55; 3-58; 3-60; 3-
65; 3-70; A-1; A-2; A-3; B-2

Index 3-12; 3-15; 3-17; 3-42; 3-44; 4-5; B-2; D-5

Integer type 3-3; 3-10; 3-21; 3-40; 3-51; 3-52; 3-
53; 3-59; 3-61; 3-65; 3-70; 3-73; 5-3; 5-4; 5-5;
A-2; B-3

Length clause 3-6; 3-10; A-2

Logical description 2-3; 3-66; 3-67; 3-68; 3-69;
4-1

Marker 3-22; 3-23; A-2

Numeric literal A-2

Object 4-1; 4-2

Package 2-3; 3-55; 3-60; 3-65; 3-66; 3-70; 3-72;
3-73; 3-74; 4-1; 4-2; 4-3; 5-1; D-2; D-4; F-2

Physical description 2-3; 2-4; 3-45; 3-50; 3-53;
3-54; 3-55; 3-57; 3-58; 3-59; 3-60; 3-61; 3-63;
3-70; 3-71; 3-74; 3-75; 3-76; 3-77; 4-3; 4-4; 4-
5

Predefined type A-2

Real type 3-11; 3-56; 3-58; 3-63; 5-4

Record representation clause 3-26; 3-27; 3-28;
3-29; 3-33; 3-41; A-3; B-2

Record type 3-12; 3-13; 3-24; 3-25; 3-30; 3-31;
3-32; A-3

Representation clause 3-6; 3-26; 3-27; 3-28; 3-
29; 3-40; 3-41

Scalar type A-3

Separator 3-1; A-3

Suptype 3-3; 3-9; 3-18; 3-20; 3-36; 3-40; 5-1; A-
3; F-2

Variable 1-3; 3-6; 3-15; 3-16; 3-17; 3-19; 3-22;
3-27; 3-28; 3-33; 3-38; 3-41; 3-66; A-2; A-3;
B-2; F-1

Variant 3-26; 3-33; A-3; B-2; F-1

Virtual discriminant 3-34; 3-38; 3-39; 5-1; A-3

WORD_16_BITS 3-32; 5-1; F-2

WORD_32_BITS 3-32; 3-67; 3-68; 5-1; D-3; D-
4; F-2

	CONTENTS
	1 INTRODUCTION
	2 OVERVIEW
	3 PRODUCING EAST DATA DESCRIPTIONS
	4 USING EAST DATA DESCRIPTION RECORD
	5 RECOMMENDED PRACTICES AND LIMITATIONS
	6 EAST AND DATA DESCRIPTION LANGUAGE REQUIREMENTS
	ANNEX A ACRONYMS AND GLOSSARY
	ANNEX B SYNTAX RULES
	ANNEX C TOOLS FOR AN EAST ENVIRONMENT
	ANNEX D DATA DESCRIPTION RECORD EXAMPLES
	ANNEX E COMPLIANCE MATRIX
	ANNEX F COMPARISON BETWEEN ADA AND EAST
	INDEX

